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In this work, we make two primary contributions: derivation of the EM update for the shifted and
rescaled beta prior and the development of an algorithm to adaptively select new edges (task assignments)
for more efficient use of an edge budget (i.e. reduced probability of task labeling error for a fixed number
of edges). The algorithm exploits several observable features of a task (namely the entropy of its label
probabilities, the number of workers already assigned to it, and a histogram of estimated worker abilities
for its neighbors) to produce a ranking of tasks most likely to be currently mislabeled. An additional
worker (sampled uniformly) is then assigned to each of the highest ranking tasks and the graph is updated.
Rankings are produced by a random forest classifier that is given the current graph structure and prior
information, and trained on ensembles of randomly generated data.

First, we derive the EM updates for the crowdsourcing problem both without and with knowledge of the
transformed beta prior. Next we outline the adaptive algorithm used to assign edges in graph construction
using the random forest classifier. Finally, we present numerical results demonstrating the effectiveness of
these techniques over a range of edge budgets.

1 Expectation-Maximization for Crowdsourcing

EM without prior

We treat A as our observed variables, t as latent variables and p as parameters. Then the joint distribution
will be given as:

P(A, t|p) = P(A|t,p)P(t|p)

= P(A|t,p)P(t) (Since true labels are independent of worker abilities)

=
∏

(i,j)∈E

P(Aij|ti, pj)
n∏
i

P(ti)

where,

P(Aij|ti, pj) = pjI(Aij = ti) + (1− pj)I(Aij = −ti)

P(ti) =
3

4
I(ti = 1) +

1

4
I(ti = −1)

E-Step:

In the E step we find the distribution of the latent variables as a function of the observed variables and
parameters estimated in the previous iteration.

P(t|A,pold) =
n∏
i=1

P(ti|A,pold)
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where,

P(ti|A,pold) = P(ti|Ai∂i, pold∂i )

=
P(Ai∂i, ti|pold∂i )

P(Ai∂i|pold∂i )

=
P(ti)

∏
j∈∂i P(Aij|ti, poldj )∑

ti
P(ti)

∏
j∈∂i P(Aij|ti, poldj )

= γi(ti)

In the sequel, allowing for a slight abuse of notation, we need only refer to

γi := γi(1) = P(ti = 1|A,pold)

=
P(Ai∂i|ti = 1,p)P(ti = 1)

P(Ai∂i|ti = 1,p)P(ti = 1) + P(Ai∂i|ti = −1,p)P(ti = −1)

=
3
4

∏
j∈∂i p

I(Aij=1)
j (1− pj)I(Aij=−1)

3
4

∏
j∈∂i p

I(Aij=1)
j (1− pj)I(Aij=−1) + 1

4

∏
j∈∂i p

I(Aij=−1)
j (1− pj)I(Aij=1)

=
3
4

∏
j∈∂i

[
1
2

+ (pj − 1
2
)Aij

]
3
4

∏
j∈∂i

[
1
2

+ (pj − 1
2
)Aij

]
+ 1

4

∏
j∈∂i

[
1
2
− (pj − 1

2
)Aij

]
M-Step:

In this we approximate the log likelihood of the observed data using the expected log likelihood of the
observed and latent variables together where the expectation is with respect to the distribution of the
latent variables computed in the E step

Q(p|pold) = Eγ [logP(A, t|p)]

= Et|A,pold [logP(A, t|p)]

=
∑

t∈{−1,1}n
P(t|A,pold) logP(A, t|p)

=
∑

t∈{−1,1}n

[(
n∏
i=1

P(ti|A,pold)

)
n∑
i=1

(
logP(ti|p) +

∑
j∈∂i

logP(Aij|ti, pj)

)]

=
n∑
i=1

∑
ti

γi(ti)

[
logP(ti|p) +

∑
j∈∂i

logP(Aij|ti, pj)

]

=
n∑
i=1

{
γi

[
logP(ti = 1) +

∑
j∈∂i

logP(Aij|ti = 1, pj)

]

+ (1− γi)

[
logP(ti = −1) +

∑
j∈∂i

logP(Aij|ti = −1, pj)

]}
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Now to maximize Q(p|pold) with respect to p we set the derivatives to zero.

∂Q

∂pj
= 0

=⇒
∑
i∈∂j

[
γi

(
I(Aij = 1)

pj
− I(Aij = −1)

1− pj

)
+ (1− γi)

(
I(Aij = −1)

pj
− I(Aij = 1)

1− pj

)]
= 0

=⇒
∑
i∈∂j

[(γi − pj) I(Aij = 1) + (1− γi − pj) I(Aij = −1)] = 0

=⇒ pj =
1

|∂j|
∑
i∈∂j

[γiI(Aij = 1) + (1− γi) I(Aij = −1)]

=
1

|∂j|
∑
i∈∂j

[
1

2
+

(
γi −

1

2

)
Aij

]

EM with Beta Prior

Instead, we seek to maximize the objective

Q(p|pold) = Eγ [lnP(A|p) + lnP(p)]

=
n∑
i=1

[
γi ln

3

4
ai + (1− γi) ln

1

4
bi

]
+

m∑
j=1

ln f

(
pj − 0.1

0.9

)
,

where

ai := P(Ai∂i|ti = 1,p) =
∏
j∈∂i

p
I(Aij=1)
j (1− pj)I(Aij=−1)

bi := P(Ai∂i|ti = −1,p) =
∏
j∈∂i

p
I(Aij=−1)
j (1− pj)I(Aij=1),

and

f(z) =
1

B(α, β)
(z)α−1(1− z)β−1

We take the gradient

∂Q

∂pj
=
∑
i∈∂j

{
γi

[
I(Aij = 1)

pj
− I(Aij = −1)

1− pj

]
+ (1− γi)

[
I(Aij = −1)

pj
− I(Aij = 1)

1− pj

]}
+

α− 1

pj − 0.1
− β − 1

1− pj

=
∑
i∈∂j

{
γiI(Aij = 1) + (1− γi)(I(Aij = −1))

pj
− (1− γi)I(Aij = 1) + γi(I(Aij = −1))

1− pj

}
+

α− 1

pj − 0.1
− β − 1

1− pj

=
∑
i∈∂j

{
γiAij − Aij + 1

pj
− Aij − γiAij + 1

1− pj

}
+

α− 1

pj − 0.1
− β − 1

1− pj
.

We then solve for the critical point

∂Q

∂pj
= 0

which implies

0 = (pj − 0.1)
∑
i∈∂j

{γiI(Aij = 1) + (1− γi)I(Aij = −1)− pj}+ (α− 1)pj(1− pj)− (β − 1)pj(pj − 0.1).
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Define

λj :=
1

|∂j|
∑
i∈∂j

[γiI(Aij = 1) + (1− γi)I(Aij = −1)] .

Then, we may more compactly write the quadratic equation

0 = (pj − 0.1)|∂j|(λj − pj) + (α− 1)pj(1− pj)− (β − 1)pj(pj − 0.1).

Numerical results indicate that the smaller root lies outside the support, [0.1, 1], of the worker ability
distribution, and the larger root is always taken for the EM update.

Note that if, instead, we model pj as Beta(α, β), then the above analysis recovers the update found
in [1, 2]. Specifically, the critical equation becomes

0 = |∂j|(λj − pj) + (α− 1)(1− pj)− (β − 1)pj

=⇒ λj|∂j|+ α− 1 = (|∂j|+ α + β − 2)pj

=⇒ pj =

∑
i∈∂j [γiI(Aij = 1) + (1− γi)I(Aij = −1)] + α− 1

|∂j|+ α + β − 2

=⇒ pj =

∑
i∈∂j

[
1
2

+
(
γi − 1

2

)
Aij
]

+ α− 1

|∂j|+ α + β − 2

=⇒ pj = p no prior
j

(
1− α + β − 2

α + β − 2 + |∂j|

)
+

α− 1

α + β − 2

(
1− |∂j|

α + β − 2 + |∂j|

)
,

where α−1
α+β−2 is the mode of Beta(α, β).

2 Adaptive Graph Construction

We adapt to the current state of the EM estimate and graph by training a random forest classifier to
estimate which label assignments are most likely incorrect. Given the current graph, the algorithm for
adaptive edge assignment proceeds as follows. At iteration `, we are given a current graph G(`) and an EM
estimate (γ(`), p̂(`)). The current graph G(`) is passed to a random forest generation algorithm that has
access to the t and p prior distributions. The random forest generator then runs EM on ensembles of i.i.d.
randomly generated instances of (A(`), t(`),p(`))e to produce task label probabilies γ̂

(`)
e and worker ability

maximum likelihood estimates p̂
(`)
e and trains a random forest classifier using entropy of label probability

estimates h(γ̂
(`)
e ), number of workers assigned to a task |∂i(`)|, and a histogram of {p̂(`)∂i } as features and

incorrectness of task assignments as the true labels. The resulting random forest classifier is then returned
to the main algorithm, which uses the random forest and EM estimates of the current graph to rank the
actual tasks by likelihood of mislabeling. The K highest risk tasks {ik}Kk=1 are then assigned one new
worker chosen uniformly from the population of workers who are not already assigned to that task. These
edges are then added to G(`) to produce G(`+1).

2.1 Random Forest

Random forest [3] is an ensemble machine learning algorithm that has wide applicability in classification
and regression tasks. The basic unit of a random forest is a decision tree. Each node in the tree represents
a binary decision on a feature and every path from the root to a leaf represents a logical conjunction of the
binary decisions encountered along the path. Learning a decision tree from dataD = {(xi, li)|i = 1, · · · ,M}
comprising of M (feature, label) pairs involves choosing a feature and a threshold that forms the splitting
criterion for each node and assigning each xi to one of the leaves, Li in the tree where Li ∈ {1, · · · , N}
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Figure 1: Illustration of the random forest technique, whereby an ensemble of decision trees are combined
to produce an estimate of the probability of a correct response. Image from [4]

if there are N leaves in the tree. During inference a new feature vector v follows a path from the root to
some leaf L in the tree and gets a class posterior distribution given by

P (l|v) =

∑M
i=1 I(Li = L)I(li = l)∑M

i=1 I(Li = L)
.

The splitting criterion is chosen using some notion of information gain such as decrease in entropy after
splitting. Let left(i) and right(i) denote the left and right children of node i and pi(l) be the fraction of
training data points that reached node i which had label l. Also define Si as the number of data points
that reach node i. Then the information gain for a particular splitting criterion is evaluated as follows:

∆ =
C∑
j=1

pi(lj) log pi(lj)−

[
Sleft(i)

Si

C∑
j=1

pleft(i)(lj) log pleft(i)(lj)−
Sright(i)

Si

C∑
j=1

pright(i)(lj) log pright(i)(lj)

]
The feature and threshold used for splitting at a node is the one that maximizes ∆.

Random forest is simply a way to reduce over-fitting in a decision tree by using ensemble of decision
trees where each tree is trained on a subset of randomly sampled training data. Inference on a random
forest is done by passing v through each tree and then averaging their predictions. So the final posterior
class probabilities are

P (l|v) =
1

T

T∑
t=1

Pt(l|v)

where T is the number of trees and Pt is probability obtained from the tth tree.

3 Numerical Results

To examine the performance of our two contributions over a range of edge budget values, we consider
a bipartite graph initialization G(0) that assigns one worker to every task and at least one task to each
of m < n workers, using the fewest edges possible (2000). As a baseline for comparison, we consider
a technique where at each step `, we add edges by sampling uniformly from the tasks i ∈ [n] and then
uniformly selecting a worker not already assigned to that task, j ∈ [m]\∂i. We then proceed by adding edges
(either randomly or adaptively) and computing the EM estimates periodically. The results of averaging
100 such experiments are show in Figure 2 using 100 workers and Figure 3 using 30 workers.
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Figure 2: Mean percent classification error for the 4 modes of estimation using 100 workers: random
graph construction both with and without transformed beta prior and adaptive graph construction using
EM with and without the transformed beta prior. Note that in the random graph generation cases, the
results of EM both with and without prior are almost identical. However, when graph construction is done
adaptively, and thus depends on the output of EM, we see a marked improvement by including worker
ability prior data. Plot generated from 100 Monte Carlo samples, error bars not shown.
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Figure 3: Mean percent classification error for the 4 modes of estimation using 30 workers: random graph
construction both with and without transformed beta prior and adaptive graph construction using EM with
and without the transformed beta prior. Note that in the random graph generation cases, the results of EM
both with and without prior are almost identical. However, when graph construction is done adaptively,
and thus depends on the output of EM, we see a marked improvement by including worker ability prior
data. Plot generated from 100 Monte Carlo samples, error bars not shown.
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