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Abstract

In this paper we propose a scheme for unconstrained face detection and recognition in videos.
Unlike other works where face detection, tracking and recognition are treated as separate en-
tities in a pipeline, our algorithm benefits from the interdependence and interaction between
them. Further our algorithm is designed such that the recognition stage only needs to tackle
the out-of-plane pose variations as the in-plane orientation variations are handled during the
detection and tracking stages. Illumination variations are explicitly taken care of using a nor-
malization technique based on a reflectance model. We believe this funnel like feature where
later, more sensitive stages need to process lesser variations would improve the accuracy of
the system. We also introduce a new video database for evaluating video based detection and
recognition algorithms. The training videos in the database also demonstrate the kind of image
acquisition needed for a good performance of the system.
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Chapter 1

Introduction

In recent years a lot of work has been done to enhance the performances of face detection,
tracking and recognition individually. However, optimal design of a complete system for face
recognition in videos, right from training data acquisition to automatic recognition of faces
from test videos, has received negligible attention.

This relatively new paradigm of both learning and recognizing faces from videos poses
new challenges but also results in some simplifications. The biggest challenge in automating
this entire process is that each stage adds to the uncertainties already inherent in the system
due to illumination and pose variations. Further, one has to choose between numerous options
already available for performing detection, tracking and recognition separately, given that not
all possible combinations are feasible either conceptually or computationally.

Having said that, the simplifications resulting from such automation could improve its per-
formance while at the same time make such systems reach a wider consumer community. First
of all using video modality for learning face models as in [1] naturally allows the capture of
pose variations that the system is likely to encounter during testing. At the same time recogniz-
ing from videos makes it possible to integrate or fuse recognition results across multiple frames
as demonstrated in [2] and [1]. Also the temporal correlation between the consecutive frames
allows us to use face tracking, which is initialized and complemented by simple face detectors.

In this work we propose an end-to-end integrated face recognition system for video based
applications. The integration starts right from the acquisition of training videos for learning
the face models for recognition. In our proposed video database, the head movements in the
training videos are not random, unlike the Honda/UCSD Video Database, but are chosen so
as to capture a large subset of possible pose variations while at the same time simplifying
the process of image acquisition and automated extraction of faces from these video. The
recognition part closely follows the work of Lee et.al in [3] with an inclusion of a closely
integrated frontal face detector and Kalman filter into the framework. Our algorithm also uses
an illumination correction stage to counter the problem of illumination variations in the video
yielding a significant boost in performance. In totality our approach aims at keeping the system
complexity minimal while achieving near state-of-the-art results.

Our work can be broadly classified into 2 tasks:
(1) Extraction of face images from training video dataset using a novel face detection and
tracking algorithm and generating appearance manifolds [add ref] based on this face dataset
(2) Based on the generated manifolds build a robust face tracking and recognition system for
real world videos.
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Chapter 2

Literature Survey

Face recognition in videos is challenging at multiple levels. The first challenge is to accurately
localize faces in each frame in the presence of in-plane and out-of-plane head pose variations.
Misalignments in face localization significantly deteriorate recognition performance. In [4] a
popular frontal face detector has been proposed, which was later extend in [5] to detect faces
with different poses and orientations. This work uses a decision tree to first estimate the out-
of-plane pose in each window. It then uses perceptrons based on simple haar like rectangular
features learned using adaboost for different combinations of that pose and in-plane rotations
to draw the final bounding box around the face. While fairly robust, the training time and effort
is quite large.

Another popular technique is the Incremental Visual Tracker [6] where instead of tracking
a fixed target, a subspace based adaptive appearance model is learned for the target in an in-
cremental online fashion. This was improved in [7] to deal with the problem of drift which
occurs due to adaption of the appearance model to non-targets. While these may be elegant
solutions for tracking of faces alone, we want to see if we could trade off tracking accuracy
for a little simplicity, without bearing the cost of reduction in recognition performance. This
choice would of course depend on the recognition algorithm.

In our algorithm we have considerably simplified the solution using just the frontal face de-
tector proposed in [4], a motion model in the form of Kalman filter [8] and a simple randomiza-
tion scheme involving HOG features and Adaboosted SVM. Other commonly used appearance
based techniques for face tracking in videos are those based on Mean-Shift [9] and Particle fil-
ters [10], both of which are pixel intensity based approaches. Kalman Filter on the other hand
is based on an adaptive motion model and hence would complement the pixel intensity based
face detection better than either of them.

Our final face detection, tracking and recognition framework for test videos is similar to [3]
with an extra addition of a frontal face detector and Kalman filter.
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Chapter 3

Training : Face Detection and Tracking

Face detection and tracking in videos provide more flexibility as compared to face detection in
still images. In our proposed algorithm we use a prediction-correction paradigm for robust face
acquisition. The face localization in the current frame depends both on the current detection
and the prediction based on the localization of the face in the previous frame using an adaptive
motion model. Our algorithm comprises of 4 major components - (i) orientation estimation,
(ii) Kalman filter based smoothing, (ii) template matching, and (iv) illumination correction. In
the following sections first each of the components are individually explained. Then we sketch
an outline of the algorithm for combining these components together for face detection and
tracking.

3.1 Orientation Estimation

(a) Illustration of Viola-Jones Face Detection (b) Orientation Tracking in Face Detection

Figure 3.1: A figure with two subfigures

Figure 3.1a Illustrates the inability of the commercially available face detectors to track
the in-plane orientation of the face. However in order to reduce the number of poses that
the recognition stage has to deal with, the desired tracking result is 3.1b so that the face
image could be cropped and transformed to a view in which the face is vertical. The following
subsections describe our approach to orientation estimation.
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3.1.1 Randomization for Orientation Estimation
Utilizing the temporal continuity in a video, we use the detection in the previous frame to
generate N candidate bounding boxes in the current frame. These candidate bounding boxes
are sampled from a multivariate Gaussian Distribution with mean, µ = [x y s θ] as the detection
in the previous frame and an appropriately chosen covariance matrix Σ. Thus,

ρ1, ρ2, · · · , ρN ∼ N (µ,Σ) (3.1)

Note that the ith random bbox is characterized by an angle with respect to the horizontal θi. If
the frame is rotated by an angle 90 − θi ∀i = 1 · · ·N , then for sufficiently large N , one of the
bboxes would enclose the most vertical view of the face. This is illustrated in Figure 3.2.

Figure 3.2: Orientation Tracking in Face Detection

In order to choose the best candidate out of these N random bboxes, a scoring technique
based on a learned adaboost SVM classifier is proposed. The bbox with the maximum score is
chosen as the final estimate of the orientation of the face. The following section discusses this
approach in detail.

3.1.2 Adaboost SVM based scoring of bounding boxes
A classifier needs to be learned in a supervised fashion to discriminate between vertical and
non-vertical faces. The Head Pose Database (see Figure 3.3) consists of 2790 face images of
15 people with varying degrees of pan and tilt. The faces with either pan or tilt in the range
[-15,15] are chosen as the positive training samples while the remaining images are used as
negative examples.

The classifer is trained on the HoG (Historam of Oriented Gradients) based features ex-
tracted from the images in the two classes. Since the pose variations within these 2 classes
itself are quite large, a single linear support vector classifier is not sufficient and yields poor
results. To overcome this problem, we use multiple weak linear classifiers combined together
using the principle of Adaboost to obtain a strong classifier (see Figure 3.4). The main idea
of Adaboost is that the sample which are misclassified in a given classifier are assigned higher
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Figure 3.3: Head Pose Database

Figure 3.4: Illustration of combination of multiple weak classifiers

weights when training the successive classifiers. See Figure 3.5 for illustration. The score
corresponding to an image with HoG feature z is given by

h(z) =
T∑
i=1

αihi(z) (3.2)

The image with the highest score best corresponds to a vertical face image. Algorithm 1
describes the details of Adaboost algorithm

3.2 Kalman Filter
Kalman filter uses the equations of kinematics while accounting for statistical variations in the
measurements and the model itself. Without delving into the derivation of the equations of
Kalman filter we simply state the results in the following section.
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Figure 3.5: Illustration of Adaboost

Algorithm 1 Adaboost for combining multiple weak classifiers

1: Input:{x1, · · · , xn} ∼ D1 {y1, · · · , ym} ∼ D2

2: Initialize pi = D1(xi) = 1
n

and qi = D2(yi) = 1
m

3: Each sample denotes the HoG feature vector of the corresponding face image
4: Output: Final score function h(z) =

∑T
i=1 αihi(z)

5: for t=1 to T do
6: Choose k samples from D1 and D2 each
7: Train weak classifier using these samples: ht(z) = sign(aTt z + bt)
8: Calculate error: εt =

∑n
i=1 pi1{ht(xi) 6=1} +

∑m
i=1 qi1{ht(yi)6=−1}

9: if εt < 0.5 then
10: αt = log{1−αt

αt
}

11: pi = pie
(−αtht(xi)) and qi = qie

(αtht(xi))

12: else
13: Discard the current classifier ht and repeat the iteration with different samples
14: end if
15: end for

3.2.1 Mathematical Background
It consists of two stages. The Predict stage uses the learned motion model and the past state
to estimate the next state while the Update stage uses the measurements corresponding to the
next state and uses it to correct the motion model as well as to give a better estimate of the
state vector given the prediction and measurements. The mathematical representation of the
two stages is as follows:
a) Predict Stage
A priori predicted state, x−k = Axk−1 + wk, where wk is the AWGN process noise

6



A priori predicted estimate covariance, P−k = APk−1A
T +Q, where Q = E[wkw

T
k ]

b) Update Stage
Measurement vector zk = Hxk + vk, where vk is the measurement noise
Optimal kalman gain, Kk = P−k H

T (HP−k H
T +R)−1, where R = E[vkv

T
k ]

A posteriori state estimate, xk = x−k +Kk(zk −Hx−k )
A posteriori estimate covariance, Pk = (1−KkH)P−k
In the context of face tracking the measurement z and state vectors x are defined as

z = [x y s θ] (3.3)

x = [x y s θ ẋ ẏ ṡ θ̇] (3.4)

Where x and y represent the top left coordinates of the bounding box and s is the size. The
dotted counter parts are their time derivatives representing velocities. The following sections
describe the meaning and initialization of all the parameter in the above equations.

3.2.2 Formulation of Face Tracking as a Kalman Filtering Problem
A is used to translate the equations of kinematics under uniform velocity into matrix form

x(t) = x(t−∆t) + ẋ∆t and v(t) = v(t−∆t) (3.5)

=⇒ x−k =

[
I4 I4
0 I4

]
xk−1 + wk (3.6)

=⇒ x−k = Axk−1 + wk (3.7)

The acceleration term is accounted for by wk the process noise which is assumed to be
AWGN.

P, the estimate covariance matrix is a measure of the accuracy of the estimated state. It is
updated by the filter over time, hence we need to only provide a reasonable initial value . Since
we do not know the state at startup, we must set it to a large diagonal matrix with large values
along the diagonal. This makes the filter prefer the measurements over the motion model which
is inaccurate in the beginning. Hence

P0 = I · 104

Q is the process error covariance matrix i.e. E[wk ·wTk ]. wkas mentioned is nothing but the
acceleration term in the equations of kinematics

x(t) = x(t−∆t) + ẋ ·∆t+
1

2
· a.(∆t)2 (3.8)

ẋ(t) = ẋ(t− 1) + a ·∆t (3.9)

=⇒ wk = [
ẍ

2

ÿ

2

s̈

2

θ̈

2
ẍ ÿ s̈ θ̈]T (3.10)
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Assuming that acceleration is same, ax for x, y and s parameters but different, aθ for θ param-
eter, we get

Q =



a2x
4

0 0 0 a2x
2

0 0 0

0 a2x
4

0 0 0 a2x
2

0 0

0 0 a2x
4

0 0 0 a2x
2

0

0 0 0
a2θ
4

0 0 0
a2θ
2

a2x
2

0 0 0 1 0 0 0

0 a2x
2

0 0 0 1 0 0

0 0 a2x
2

0 0 0 1 0

0 0 0
a2θ
2

0 0 0 1


(3.11)

Greater ax and aθ mean filter has to be more adaptive due to acceleration.
The measurement error covariance matrix R depends on the accuracy of the face detector.

Let us assume that our face detector detects faces to within ± 10 pixels of the actual face
location 95% of the time and that the error is Gaussian-distributed (which is a requirement of
the Kalman filter). This implies that

2σ = 5 =⇒ σ2 = 5 (3.12)

Hence, assuming that the error variance is same for all components of the state vector the
measurement error covariance matrix is given by

R = E[vkv
T
k ] = I4 × 52 (3.13)

H defines the map between the measurement and the state vector as

zk = Hxk + vk (3.14)
=⇒ H = [I4 04] (3.15)

3.3 Template Matching
Template matching is a technique for finding small areas of an image(search image) that match
to a template image. A basic method for template matching is to use a convolution mask, tem-
plate. The convolution score is then used as the measure to identify the location of best possible
match for the template in the given image.
One of the most common measure used in template matching to compare the similarity of dif-
ferent patches of input image with the template is SAD(Sum of Absolute Differences) [?]
The general setup of the template matching problem consists of an Input image(I), a template
image(T) and a template matching box. Our goal is to locate the highest matching area.
To detect the best matching area, the template is compared against the source image by trans-
lating the origin of the template at each pixel of the input image (figure 3.6) and SAD score
is calculated at each point. A pixel with coordinates (xi, yi) in the input image has intensity
Ii(xi, yi) and a pixel with the coordinates (xt, yt) in the template image has intensity It(xt, yt).
The absolute difference in the intensities is given by -

Diff(xi, yi, xt, yt) = |Ii(xi, yi)− It(xt, yt)| (3.16)
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Figure 3.6: Transition of template over the input image

For a given position, (x,y), of the origin of template the score is defined as -

SAD(x, y) =
Tr∑
i=0

Tc∑
j=0

Diff(x+ i, y + i, i, j) (3.17)

where Tr, Tc denotes the number of rows and columns of template image.
The location with the lowest SAD score determines the best match of the template within

the input image.

Figure 3.7: Sample Result for Template Matching

3.4 Illumination Correction
Human perception perceives any stimuli relative to the background rather than perceiving it in
absolute terms. This idea forms the basis for the technique implemented here for nullifying the
effect of variant illuminations on a face image.In [11] Chen et al. proposed a local descriptor
called Weber Local Descriptor (WLD). It consists of 2 components: Differential Excitation and
Orientation. Differential Excitation is calculated as a ratio of the intensity differences of current
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pixels with its neighbors and intensity of the current pixel. Orientation captures the direction
of the intensity variation in the neighborhood of the current pixel. We have made use of the
differential excitation component of WLD to compute the ratio image from a given face image.
The response for current pixel in output image is given by:

ε(xc) = arctan

(
α

p−1∑
i=0

xc − xi
xc

)
(3.18)

where xc is the centre pixel, xi are the neighboring pixels, p is the number of neighboring
pixels and α is used to adjust the intensity differences between neighboring pixels.

Figure 3.8: Illustration of computation of WLD [12]

According to the Lambartian reflectance model, a face image could be represented as:

F (x, y) = R(x, y)I(x, y) (3.19)

where F (x, y) is the image pixel value, R(x, y) is a measure of reflectance and I(x, y)
denotes the illuminance at each pixel. Reflectance is largely determined by the facial surface
texture and shape, hence, could be considered as the illumination insensitive part. Whereas
illuminance depends only on the lighting source present.

As proved in [12], applying WLD to a face images F(x,y) gives an illumination invariant
representation of F known as “Weber-Face (WF )”:

WF (x, y) = arctan

(
α
∑
iεA

∑
iεA

F (x, y)− F (x− i∆x, y − i∆y)

F (x, y)

)
(3.20)

in which A = {-1,0,1}. From equation 3.19 , we have

F (x− i∆x, y − i∆y) = R(x− i∆x, y − i∆y)× I(x− i∆x, y − i∆y) (3.21)

Illumination component is commonly assumed to vary very slowly, which gives us:

I((x− i∆x, y − i∆y) ≈ I(x, y) (3.22)

10



Substituting equations 3.19, 3.21, and 3.22 in equation 3.20, we get:

WF (x, y) = arctan

(
α
∑
iεA

∑
iεA

R(x, y)−R(x− i∆x, y − i∆y)

R(x, y)

)
(3.23)

It is evident from equation 3.23 that {WF(x,y)} could be treated as an illumination insensitive
representation of a face image F, as it comes out to be only dependent on the facial characteris-
tics. This method thus eliminates the illumination part without actually estimating it,as in [13]
or [14], which involves assumptions not applicable to real world scenarios.

As evident from the figure 3.9, the original images for a single individual having dras-
tic variations in the lighting conditions, are hard to recognize even using the human percep-
tion/senses. Whereas the normalized representation of the images are fairly similar to each
other for a given individual. Fig.3.9 shows the output of weber-faces normalization technique
and Fig.?? shows the output for NL means normalization technique.

Figure 3.9: Samples from Yale B database for 2 different individuals and their corresponding
Weber-faces

3.5 Algorithm
All the components defined in the previous sections are combined to model a complete face
detection and tracking algorithm. The model could be visualized as in figure 3.10
The basic steps of the algorithm could be summarized as-
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Algorithm 2 Face Detection and Tracking Algorithm
1: for each frame in the video do
2: Input: The position parameters, [x,y,size,θ], of the bounding box around the face de-

tected in the previous frame, say at time step (t− 1)
3: Position parameters,[xi, yi, sizei, θi] of the 20 random bounding boxes are generated

from a normal distribution with mean as the input and an appropriate sigma
4: A priori prediction of the state of face in current frame is done using the Kalman Filter’s

prediction stage.
5: for each of the 20 bounding boxes generated in line 3 do
6: Rotate the frame by an angle of 90− θi
7: Apply a Viola Jones face detector on the rotated frame
8: if face is detected then
9: it would act as a priori detection in the current frame

10: else
11: Template matching is applied with the detection from previous frame as the tem-

plate
12: Best match is used as a priori detection in the current frame
13: end if
14: Using this priori detection and the priori prediction from line 4, final prediction is

done for the bounding box in consideration
15: Illumination Correction is applied on this predicted face
16: Adaboost score is calculated for this final prediction
17: end for
18: Maximum of the 20 adaboost scores is found and the corresponding bounding box is the

detected face in the tth frame
19: This detection is then used as the input for frame at (t+ 1)th time step
20: end for
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Figure 3.10: Detection and Tracking Algorithm
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Chapter 4

Online Tracking and Recognition System

The previous chapter dealt with a generic method that could be applied for extraction of well
tracked face images from a video. This chapter begins with the description of construction
of Appearance Manifolds, a model for representation of face images of a person. Then it goes
ahead to describe an algorithm that uses the appearance manifold for obtaining a score about the
goodness of a crop of face image and also for recognition of person identity in the video. The
face detection and tracking algorithm discussed before can be easily extended to this scenario.

4.1 Appearance Manifolds
In [1], Lee et.al presented a technique built around PCA to better incorporate the pose variations
into subspace representation of face images of an individual. It also makes use of the fact that
pose variations occur in a continuous fashion and uses the predictions in all the previous frames
to recognize a person in the current frame.

To begin with, a given training sequence Sk of faces images of personk is partitioned into
P parts by using K-means clustering with K = P . This step serves to segregate the different
poses of the person in an unsupervised way. Pose cluster (Ci

k) for ith pose is represented by a
linear subspace Lik using PCA. The dimension of the subspace is maintained constant for all
pose subspaces of all target individuals. This piecewise linear model of distribution of face
images of a person in a low dimension vector space is called an Appearance Manifold Mk.

The task of recognizing a new face image is straight-forward at a conceptual level provided
Mk is known accurately

k∗ = argmin
k
dH(I,Mk) (4.1)

where dH(I,Mk) = min
x∈Mk

I − Îx (4.2)

Here Îx is the image reconstructed from the low dimension feature vector. Since we are approx-
imating the actual manifold using samples, we need to fall back on a probabilistic approach to
estimate an optimal x∗ in Mk such that Îx∗ is closest to I . To this end, the distance from
manifold is defined as

dH(I,Mk) =

∫
Mk

d(Ix, I)pMk
(x|I)dx (4.3)

14



where pMk
(x|I) is the conditional probability of x being the optimal point in Mk given face

image I. Further, total probability theorem gives

pMk
(x|I) =

P∑
i=1

pCik(x|I)P (Ci
k|I) (4.4)

Substituting equation 4.4 in 4.3

dH(I,Mk) =
P∑
i=1

P (Ci
k|I)

∫
Cik

d(Ix, I)pCik(x|I)dx (4.5)

dH(I,Mk) =
P∑
i=1

P (Ci
k|I)dH(I, Ci

k) (4.6)

where P (Ci
k|I) is the conditional probability of x∗ belonging to pose subspace Ci

k in manifold
Mk. Equation 4.6 forms the fundamental equation to be used instead of equation 4.2 for
recognizing the identity of the person in the face detected in the current frame at time t.

Since Ci
k has been approximated by a linear subspace Lik, therefore dH(I, Ci

k) is nothing
but the L2 distance between I and the image reconstructed from its projection on Lik. Section
4.1.1 discusses how the term P (Ci

k|I) can be calculated.

Figure 4.1: Representation of Manifold in 3 dimensional space

4.1.1 Approximating the conditional probabilities
At time t we have all the face images from I0:t. So using Bayes’ Theorem we get a recursive
formula. iteratively P (Ci

k|I) at time t can be expanded as

P (Ci
kt |It, I0:t−1) = αP (It|Ci

kt)
P∑
j=1

P (Ci
kt |C

j
kt−1

))P (Cj
kt−1
|It−1, I0:t−2) (4.7)

where α ensures that
P∑
i=1

P (Ci
kt
|It, I0:t−1) = 1.
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Here P (It|Ci
k) is the probability that face image It ∈ Ci

k. Farther It is from subspace
Lik, lower is the chance of its belonging to Ci

k. Hence this conditional probability can be
conveniently calculated as

P (It|Ci
k) = Λt

k exp

(
dH

2(It, L
i
k)

2 ∗ σ2

)
(4.8)

where Λt
k ensures that

P∑
i=1

P (It|Ci
k) = 1.

The term that actually captures the notion of temporal continuity in pose variations amongst
frames is P (Ci

kt
|Cj

kt−1
) which is the probability of x∗ in the current frame lying in Ci

k given that
in the previous frame it belonged to Cj

k. This can be easily obtained by counting all instances in
training set Sk when an image in Ci

k followed another in Cj
k. Again normalization is essential

to ensure
P∑
i=1

P (Ci
kt
|Cj

kt−1
) = 1 at every time instant.

Figure 4.2: Transition Matrix

4.2 Algorithm
Online tracking and recognition algorithm could be visualized in the form of a flow chart as
shown in 4.3. Tha basic steps of this task are summarized in Algorithm 3 -
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Algorithm 3 Online Tracking and recognition algorithm
1: for each frame in the video do
2: Input: The position parameters, [x,y,size,θ], of the bounding box around the face de-

tected in the previous frame, say at time step (t− 1)
3: Position parameters,[xi, yi, sizei, θi] of the 20 random bounding boxes are generated

from a normal distribution with mean as the input and an appropriate sigma
4: A priori prediction of the state of face in current frame is done using the Kalman Filter’s

prediction stage.
5: for each of the 20 bounding boxes generated in line 3 do
6: Rotate the frame by an angle of 90− θi
7: Apply a Viola Jones face detector on the rotated frame
8: if face is detected then
9: It would act as the measurement vector in the current frame

10: else
11: The random bounding box is used as the measurement vector in the current frame
12: end if
13: Using this measurement vector and the priori prediction from line 4, final prediction

is done for the bounding box in consideration
14: Illumination Correction is applied on this predicted face
15: A score is generated by calculating the distance of this image from the closest pose

subspace of the identified persons manifold in the previous frame
16: end for
17: Minimum of the 20 appearance manifold distances is found and the corresponding

bounding box is the detected face in the tth frame
18: This detected face is recognized using the appearance manifold
19: This detection is then used as the input for frame at (t+ 1)th time step
20: end for
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Figure 4.3: recognition
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Chapter 5

Experiments and Results

5.1 Databases

5.1.1 Honda-UCSD database
It is a standard video database for evaluating face tracking/recognition algorithms. Video se-
quences are recorded at 15 frames per second in an indoor setup with a resolution of 640×480.
Each individual rotates his/her head at variable speeds and contains large variations in and out-
of plane head movements and facial expressions. Every individual is recorded in at atleast 2
sequences, thus providing a training and a testing set of videos.

5.1.2 Indian Database
The goal of this Indian Database is to provide a video database for evaluating face detec-
tion/tracking algorithms on Indian faces. Indian faces generally show large variations espe-
cially in terms of skin color and facial hair. Videos are recorded for 30 different individuals
in an indoor environment at 25 frames per second using a Sony CX-110 camera at ACES, IIT
Kanpur. The resolution of each video sequence is 720× 576.

Similar to the Honda-UCSD database, each individual is recorded in atleast 2 sequences,
thus providing a training and a testing set of videos. This dataset contains large variations in
terms of in-plane and out-of plane head movements. Unlike Honda-UCSD dataset, it contains
structured variations in head movements in the training dataset for easy acquisition of face
images. This allows us to get a wide range of different poses. The main motivation behind col-
lecting this dataset is to evaluate the algorithms in an Indian setup as there is no such database
available till date.

5.2 Results

5.2.1 Training Stage
From table 5.1 it can be seen that the standard viola-jones based algorithm for face detection
yields a poor detection accuracy, i.e. it is able to correctly detect only about half of the total
number of faces in the Honda-UCSD video. Further since it does not adapt to the orientation of
the face, the actual number of faces that could be used in construction of appearance manifold
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Figure 5.1: Various face poses extracted using the proposed algorithm

Figure 5.2: Effect of Template Matching on tracking performance

is actually even lower. Our proposed algorithm both with and without template matching beat
this by a large margin. This means that our algorithm is able to extract more number of usable
faces from the same video. Also the performance of all the three approaches improves on our
proposed Indian Database. This is largely due to the structured nature of the head movements
in the training videos of our database, that allow easier and reliable tracking without compro-
mising on the range of pose variations captured. As per our intuition, our tracking algorithm
employing template matching outperforms all others, becuase even when the face is not de-
tected by the viola-jones detector, we are able to track it using the previous detector and the
Kalman Filter.

Boxplot shown in Figure 5.3 is a representation for the variation in detection accuracy
observed in different training videos for the different algorithms. Our algorithm with template
matching achieves detection rates of more than 85% on 50% of the training videos in Honda-
UCSD database and more than 90% on 50% of the training videos in Indian Database.
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Table 5.1: Average value of tracking accuracy

Databases Honda UCSD Database Indian Database

Without Template Template Viola Jones Without Template Template Viola Jones
Matching Matching Detector Matching Matching Detector

Accuracy 74.79 82.37 55.98 79.27 86.41 70.39
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Figure 5.3: Box Plot for Tracking Accuracy of various configurations

5.2.2 Recognition Stage
Table 5.2 shows the recognition accuracies of the final system for different methods of face im-
age acquisition from the training videos. Again since template matching resulted in extraction
of more number of faces, it yields higher accuracy than the method without template matching.
Note that the accuracy here is the fraction of good detections that are correctly recognized.

Box plot in Figure 5.6 shows that the template matching based apporach yields a recogni-
tion accuracy of more than 90% for 50% of the test videos in the Honda-UCSD database and
more than 85% for 50% of the test videos in the Indian Database. Thus there is a significant
improvement of 5-10% from the approach without template matching.
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Figure 5.4: Results of online tracking on Indian video database

Figure 5.5: Results of online tracking on HONDA/UCSD video database

Table 5.2: Average value of accuracy for recognition

Databases Honda UCSD Database Indian Database

Without Template Template Matching Without Template Template Matching
Matching Matching

Accuracy 82.2 85.86 73.19 77.49
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Figure 5.6: Box Plot for Recognition Accuracy of various configurations
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Chapter 6

Conclusions

In this work we have built an end-to-end integrated face detection, tracking and recognition
system. To the best of our knowledge this system outperforms the current state-of-the-art face
detector and tracking systems in terms of accuracy. Most of the current systems require the
training database for face recognition to be provided in the form of manually cropped images.
However our system is capable of extracting the faces from the videos automatically, from
which the false detections could be manually removed. This makes this system a potential can-
didate for small to medium surveillance security systems, specially for homes or personal work
spaces. Further with our Indian Database we try to establish a new paradigm in database acqui-
sition where special structure could be leveraged to simplify face image acquisition procedure
for training database.
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