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ABSTRACT

Replicating a human-level understanding of the physical world in computers is a mon-

umental task. Achieving this requires building representations of concepts that manifest

themselves visually, linguistically or through other senses. Furthermore concepts do not

exist in isolation but are related to each other. In this work, we show how to build repre-

sentations of concepts from visual and textual data, link visual manifestations of concepts

to references in text descriptions (a problem known as word or phrase grounding) without

strong supervision, and model the interaction between concepts. Specifically, we address the

following three challenges faced by existing vision-language models:

The first challenge is that of building generalizable and accurate representations of images

and words. For generalization across tasks, we build aligned image-word representations that

can be shared across multiple tasks like visual recognition and visual question answering and

enhance inductive transfer between them. We also augment text-only word embeddings with

word embeddings learned from visual co-occurrences to provide more accurate representa-

tions of visual concepts.

The second challenge is linking references to visual concepts in textual descriptions to

the corresponding regions in the image without requiring strong supervision in the form of

word-region grounding. We show that maximizing a lower bound on mutual information

between image regions and captions leads to state-of-the-art phrase grounding performance.

The third challenge is extending vision-language systems to model interactions between

visual entities. We build systems that demonstrate this ability in both generation and

detection settings. We show how to generate a plausible layout and appearance of entities

given a text description of entity actions and interactions. We also develop a state-of-the-

art factored model and training techniques for detecting human-object interactions using

pretrained object and pose detectors.
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CHAPTER 1: INTRODUCTION

In the last decade, computer vision and machine learning have made huge strides in super-

vised pattern recognition problems. Conceptually, the solution has been remarkably simple

and general - neural networks trained on large amounts of labelled data using stochastic

gradient descent. As an evidence of progress, object detection performance on the PAS-

CAL VOC 2007 benchmark has more than doubled from 35 mAP achieved by Deformable

Part Models to 79 mAP boasted by Faster-RCNN only half-way through the decade. Cur-

rently, carefully engineered object detectors and low-level vision models (e.g edge detectors,

monocular depth estimators) are performant and robust enough to be part of safety-critical

applications like self-driving cars.

With progress on these fundamental vision applications, new problems have emerged on

the horizon that require going beyond detecting objects and attributes in images. Two

images, both with a “dog” and a “man” may be drastically different. For instance, consider

images described by captions “An old man walking a white dog on a beach” and “A tall man

sitting on a couch with a brown dog on his lap”. Generating such descriptions for images or

understanding the scenes depicted in the images to answer natural language questions like

“What is the man doing on the couch?” requires an understanding of interactions between

objects and how natural language may be used to refer to parts of the image in addition to

object and attribute detection.

Furthermore, for a human-level understanding of visual and textual concepts, it is im-

portant to look beyond categorization for a representation of images and words that is rich

enough to express relations between various concepts within and across modalities. For

example, humans understand that “dog” relates to other concepts such as “pet”, “needy”,

“cute”, “paws”, “tail”, “fluffy” etc. and that it would be absurd for a “man” to have a

“paw” or be on a “leash”. Image-text embeddings have shown potential for providing such a

representation. However, image-text embeddings are often learned in a task-specific manner

and generalization across tasks needs further exploration.

In this work, we address questions about learning representations of concepts from images

and natural language (text) data. This involves learning generalizable concept represen-

tations for objects and attributes, implicit and explicit modeling of interactions between

objects, and learning to map textual references to visual manifestation of concepts in images

without direct supervision. We will now discuss these 3 challenges in detail.
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1.1 CHALLENGE 1: ACCURATE AND GENERALIZABLE REPRESENTATIONS

The right representation could greatly simplify inference and reduce data required to learn

such inference for any task. With the popularity of end-to-end training in deep learning

frameworks, it is common to learn representations from raw inputs that are tuned for a

specific task using supervised learning on task data. This approach has worked well for simple

image classification or detection problems where the inference is a simple linear classification

layer operating on the image representation. However, for vision-language problems like

VQA where a complex inference on the image and word representations needs to be learned

in addition to the representations themselves, such an approach poses a challenge. The

model could learn a representation that does not generalize but still achieve high training

accuracy by overfitting through inference parameters. Compensating for this effect requires

training on increasingly large datasets with increasing complexity of inference required.

Intuition also suggests that concepts such as objects, attributes, relationships or inter-

actions are shared across vision-language tasks. Hence, it is reasonable to expect image

and word representations learned from one task to generalize across other tasks, a property

currently lacking in vision-language models that are trained end-to-end on a single task.

Another aspect to consider while investigating representations of concepts is the multi-

modal nature of such representations. Human understanding of concepts such as “dog”

draws from multiple sensory experiences such as seeing various dogs, hearing a dog’s bark or

growl, and even smelling or feeling the dog’s fur. In contrast, popular approaches for learn-

ing representations of visual and textual concepts are through learning a visual classifier

and modeling word co-occurrences in large text corpora respectively. There exists work on

learning image-text embeddings. However, the goal of such approaches is to either learn a

mapping across modalities or to jointly represent an input image and text such as a question

to predict an answer rather than to construct representations of concepts.

Below we describe our work that addresses the representation challenge. Specifically, we

investigate the use of aligned image and word representations that generalize across multiple

vision-language tasks, and using images to improve word representations.

1.1.1 Aligned image-word representations that generalize across tasks

There are multiple tasks like visual question answering (VQA), visual recognition (VR),

and image captioning that require image and word representations. Our work on learning

shared and aligned image and word representations, discussed in Chapter 3, is one of the

initial efforts in sharing representations across tasks like VQA and VR. The goal is to learn
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image and word representations and formulate inference for these tasks using these represen-

tations in a way that enhances inductive transfer across tasks. For instance, learning object

and attribute recognition should lead to performance gains on VQA and vice-versa. The key

insight is that all vision-language tasks share the following:

• Concept of objects and attributes. The word “dog” in VQA, VR or any other

vision-language task refers to the same concept.

• Word-region verification sub-task. Every vision-language tasks needs to solve a

common sub-task of verifying whether a word applies to an image-region.

Therefore, we formulate inference for both VR and VQA tasks using shared image-region

and word representations with explicit word-region verification as an intermediate step. We

use inner product between learned region and word embeddings as the verification mecha-

nism. Thus our work has two key contributions: (i) we share word representations across

tasks in addition to sharing visual representations; (ii) interpretations of these representa-

tions and the inner product operation remains consistent across tasks which allows consistent

training signal for the shared vision-language representations (SVLR) during joint training

across multiple vision-language tasks.

Our key result is that SVLR leads to greater inductive transfer from recognition to VQA

than sharing image features in multitask learning. This directly leads to highly interpretable

attention as demonstrated by high correlation with human attention and the ability to

produce object and attribute labels for the selected relevant region.

1.1.2 Using images to improve word representations

Human understanding of concepts draws from a range of senses. For instance, humans

integrate visual and other sensory experiences (touch, smell, and sound) of “dogs” along

with textual knowledge to fully comprehend the concept of a “dog”. In contrast, commonly

used word representations like word2vec and GloVe are learned only from co-occurrences of

words computed from large text corpora. Learning representations of words using only text

has a few key limitations:

• Text often consists of interpretations of concepts or events rather than description of

visual appearance. For instance, it is rare to come across a textual description of “dog”

as an animal having 4 legs, 2 eyes, 1 tail etc. Such information, however, is readily

accessible in images.
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• Existing word embeddings are learned from a single co-occurrence type i.e. does a word

occur in the neighborhood of another word. However, words may be related in more

than one ways. For example, “apple” and “red” are related through an object-attribute

relation whereas “table” and “chair” are related through context.

In Chapter 4, we propose to compute word representations from multiple types of visual co-

occurrences extracted from annotated image datasets. We say two words co-occur visually

if both words apply to the same image or image-region. We then extend GloVe’s log-

bilinear model to learn word embeddings in a multitask fashion from four types of visual

co-occurrences. Our approach not only learns a single word embedding for each word but

also learns transformation functions that map that embedding to co-occurrence type-specific

embedding spaces. We demonstrate qualitatively that modeling multiple co-occurrences

provides a richer sense of word relatedness that text only embeddings.

Through unsupervised clustering, supervised partitioning, and zero-shot classification

analysis we demonstrate that word embeddings from visual co-occurrences or ViCo com-

plement the information available in text-only embeddings like GloVe. Evaluation on down-

stream word-only and vision-language tasks demonstrates superior performance to GloVe

and random vectors. However, a key finding is that performance of random vectors comes

surprisingly close to learned embeddings (GloVe or ViCo) on vision-language tasks. We

hypothesize and present evidence that given enough data, vision-language models transform

random vectors into useful task-specific embeddings but in data-starved scenarios random

vectors perform significantly worse.

1.2 CHALLENGE 2: MAPPING TEXTUAL REFERENCES TO IMAGE-REGIONS
WITHOUT STRONG SUPERVISION

Matching words in questions or captions to image regions is fundamental to all vision-

language tasks like VQA, image captioning, referring expression comprehension, visual dialog

etc. In many of these tasks, this matching or grounding is learned as an attention mechanism

using only task supervision. In Chapter 5, we explore a mutual information based objectives

for learning this word-region mapping from paired image-text data without direct grounding

supervision.

For a concrete evaluation, we focus on the task of weakly supervised phrase grounding.

Given paired image-caption data such as Flickr30K, the goal is to learn to map noun phrases

to image regions. Images are represented using features extracted from a pretrained object

detector, and caption-words are represented using contextualized features from a pretrained
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language model. We maximize the InfoNCE lower bound on mutual information between

the set of region features from an image and caption-word representations. Specifically, we

maximize compatibility between attention-weighted regions and words in the corresponding

caption compared to non-corresponding pairs of images and captions. A key idea is to

construct negative captions through word substitutions using a language model instead of

randomly sampling negative captions from the training data. By training on either COCO-

Captions or the much smaller Flickr30K train set (without grounding annotations), we

achieve state-of-the-art performance on Flickr30K entities test set.

In future work, we plan to incorporate this additional objective while training VQA or

captioning models to guide relevant visual information extraction from images.

1.3 CHALLENGE 3: MODELING INTERACTIONS BETWEEN OBJECTS

Visual scenes with the same objects could have vastly different interpretations. The reason

is that the same object may be interacting with a different object in the two scenes (e.g .

“man riding a bike” vs . “man riding a horse” where both scenes have a man, a bike, and a

horse) or interacting with the same object but in a different way (e.g . “man walking horse”

vs . “man riding horse”).

To address this challenge, we consider both detection and generation settings. In the

generation setting, we aim to generate a video from a text description of entities and their

interactions. In the detection setting, our goal is to detect human-object interactions.

1.3.1 Modeling interactions in the generation setting

A natural language description of a scene can succinctly convey information about what are

the entities (objects or people) in the scene, and what might be a likely spatial arrangement

and appearance of those entities. Note that both spatial location and appearance of an

entity depends on other entities, thus requiring joint modeling and understanding of entity

interactions.

To study this problem, in Chapter 6, we introduce Semantic Scene Generation (SSG)

- the task of generating scene videos with multiple entities given a rich natural language

description. A major challenge in this task is jointly modeling the layout and appearance of

mentioned entities. This in turn requires an understanding of how actions and interactions

mentioned in the description affect entity layout and appearance. In addition, the task

also requires world knowledge. For instance, cartoon videos set in the stone age assume a

different world knowledge than those set in the future or real world street scenes.
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Our approach sequentially adds entities in the scene by predicting the location and scale

of the current entity, and retrieving a spatio-temporal entity segment given the layout and

appearance of entities added to the scene thus far. Our key technical contributions include se-

quential training of components of the model while jointly modeling layout and appearances,

and auxiliary losses that encourage learning compositional representations for retrieval. We

also introduce a new richly annotated video-caption dataset of 25000, 3 second clips from

the Flintstones animated series.

1.3.2 Modeling interactions in the detection setting

State-of-the-art vision-language models typically treat images as a bag of regions and

have a limited ability to understand the concept of interactions such as “human-driving-

car”, “human-riding-horse”, or “human-walking-horse”. To equip the next generation of

VQA or captioning models with the ability to understand interactions, in Chapter 7, we

study the task of human-object interaction detection. Specifically, we evaluate the efficacy

of pretrained object and pose detector outputs in representing and detecting interactions.

Recently, HOI detection literature has seen the use of increasingly sophisticated tech-

niques for encoding appearance (e.g using multi-task learning and attention mechanisms)

and layout (e.g. using mixture density networks or interaction patterns). In this work, we

show that with an appropriate factorization, and encodings of layout and appearance con-

structed from outputs of pretrained object detectors, a relatively simple model outperforms

more sophisticated approaches on human-object interaction detection. Our model includes

factors for detection scores, human and object appearance, and coarse (box-pair configura-

tion) and optionally fine-grained layout (human pose). We also develop training techniques

that improve learning efficiency by: (i) eliminating train-inference mismatch; (ii) rejecting

easy negatives during mini-batch training; and (iii) using a ratio of negatives to positives

that is two orders of magnitude larger than existing approaches while constructing training

mini-batches.
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CHAPTER 2: BACKGROUND

In this chapter, we introduce literature in both Computer Vision and Natural Language

Processing communities that lays the foundation for much of this thesis.

2.1 THE CONCEPT OF A “CONCEPT”

It is important to distinguish between concepts and categories. A category is a collection

of instances which are treated as if they are the same. A collection of images which have all

been labeled as “dog” form a visual “dog” category. Note that categorization only requires

identifying whether an item belongs to a category but does not require any knowledge of

how the categories relate to each other.

For the purposes of this work, concepts are similar to categories such that one can assess

the degree to which an item is associated with a concept. However, unlike categories, con-

cepts do not exist in isolation but are always defined in relation to other concepts [1]. For

example, it is impossible to understand the concept of a “dog” without invoking other con-

cepts like “pet”, “hairy”, “needy”, “cute”, “paws”, “tail”, “fluffy” etc. With deep learning,

computer vision has come a long way in categorization, but representation of concepts leave

much to be desired.

Features vs. embeddings as concept representations. Consider a convolutional neural

network (CNN) that is trained for the task of classifying images as “dog”,“cat”, or “whale”.

Any network that maps all images of the same category to a unique point, a “hash code” for

the category, in the feature space solves the classification task perfectly. The 3 points in the

feature space corresponding to the 3 categories are in a way the perfect features for the task.

But are these unique “hash codes” a good representation of visual concepts underlying those

categories? Not necessarily. Imagine the feature representation for “dog”, “cat” and “whale”

in a 3-dimensional space are [1, 0, 0], [0, 1, 0], and [0, 0, 1] respectively. Assuming a euclidean

distance metric, such a representation fails to encode that the concept of a “dog” is more

similar to “cat” than “whale” because the first two are domestic land-dwelling quadrupeds

while the latter is a sea creature.

We will differentiate embeddings of concepts from features as providing a meaningful

metric space where distances between embeddings are indicative of relationship between

those concepts. Such a metric space might be induced through inductive biases in the

network architecture (e.g . using convolutional layers instead of fully connected layers) for
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embedding images or through explicitly enforcing constraints or desirable properties during

training.

2.2 VISUAL REPRESENTATIONS

Since the rise of deep learning, the most common visual representations are those learned

by CNNs through supervised classification tasks, particularly the ImageNet classification

task [2]. ImageNet images assume the image boundaries tightly enclose the object. How-

ever, finetuning models initialized with ImageNet trained weights perform well for tasks that

require localization such as object detection [3, 4, 5] and segmentation [6, 7]. For vision-

language tasks, the following two approaches are common -

Whole Image Representations: The image is fed through a CNN and intermediate

convolutional feature maps are used as features. The features may further be spatially ag-

gregated using mean pooling or learned transformations such as fully connected layers [8, 9]

or attention [10, 11, 12]. The CNN is typically pretrained on ImageNet classification and

finetuned end-to-end on the vision-language task of interest.

Region-level Representations: Object regions are extracted using object detectors or

unsupervised methods like Edge Boxes [13] or Selective Search [14]. The regions are then

encoded using a CNN or ROI-pooled features from the object detector. Detectors trained

on a large number of object and attribute annotations from densely annotated datasets like

VisualGenome [15] have been shown to outperform those learned only on a small number

of object categories such those found in MSCOCO [16]. For tasks like VQA, region-level

representations are aggregated using attention to construct a question relevant visual rep-

resentation of the whole image [17, 16, 18]. The aggregation is often a linear combination

of region features with attention scores as weights. Hence, a well trained attention model

is expected to assign high attention scores to regions relevant to answering the question

while assigning low scores to irrelevant regions. Note that attention scores are treated as la-

tent variables which are trained only through supervision provided by the downstream VQA

task. Region-level representations outperform whole-image representation based approaches

in tasks like VQA [18].

More recently, self-supervised or unsupervised representation learning approaches [19, 20,

21] have shown promising results. Features learned completely without ground truth cate-

gory labels are now able to achieve performance competitive to fully supervised features on

image classification, detection and segmentation tasks [22, 23]. An untested hypothesis is
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that self-supervised features provide better embeddings for images by encoding attribute in-

formation. Such visual appearance information may not be encoded in the features learned

through fully supervised object classification because they are trained to be invariant to

within class appearance variations. Whether self-supervised features benefit vision-language

tasks remains to be seen.

2.3 LANGUAGE REPRESENTATIONS

Language representations for vision-language tasks range from word-level representations

to sentence level representations.

Word-level Representations. Words in text, especially nouns, adjectives, verbs, adverbs,

and prepositions correspond to concepts that may be visual (green), auditory (loud), tactile

(soft), olfactory (fragrant), or abstract (gravity) in nature. Recent methods for represent-

ing words share the hypothesis that representations of word meaning may be derived by

modeling a word’s association or co-occurrence with other words in large natural language

corpora. In practice, this takes the form of word vector representations obtained through

factorization of co-occurrence matrices. The factorization may be explicit and global such

as factorization of raw co-occurrence count matrices [24] or transformations of counts such

as Positive Pointwise Mutual Information [25], Hellinger distance [26], or log co-occurrence

counts [27]. Factorization could also be implicit and local such as performed by Continuous

Bag-of-Words and Skip-Gram [28] approaches that scan a document using a local window.

It has been established that local window approaches like word2vec [28] perform implicit

matrix factorization [29] and are specific instantiations of global approaches like GloVe [27].

Sentence-level Representations. Some vision-language tasks such as VQA [8], or Caption-

Image retrieval [30, 31, 32] might require a vector representation of the entire sentence. This

is often done by feeding the sequence of words through a recurrent model such as LSTM [33]

or GRU [34], and the hidden representation output at the last time step is used as the sen-

tence embedding [35]. These sentence level representations are usually trained directly on

the downstream task with parameters of the recurrent model learned using Backpropogation

Through Time [36].

Contextualized Word Representations. Recently, language models pretrained on large

text corpora have shown strong performance as feature extractors that simultaneously en-

code word representations and sentence context. The first work to demonstrate strong
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performance of language model features on a wide range of NLP tasks is ELMo [37]. The

language model is an LSTM pretrained to maximize the log likelihood of sentences in a large

text corpora. The hidden layer outputs at different time steps were used as contextualized

word representations for the corresponding words. Note that language models are pretrained

in a completely self-supervised fashion. Therefore, generalization of language model features

for tasks such as question answering, semantic role labelling, coreference resolution, named

entity recognition etc. is a significant milestone in computational methods for natural lan-

guage understanding.

Another breakthrough in contextualized word representation occurred through a novel

attention based sequence encoder known as a Transformer [38]. Transformers consist of a

stack of key-value attention layers interleaved with fully connected layers. The attended

representation from the context of a word are added as a residual to the transformed repre-

sentation of the word created by the previous layer. BERT [39] is a successful transformer

based model. Unlike previous language models which are trained to maximize the log like-

lihood of sentences in a text corpora, BERT is trained using a masked language modeling

(MLM) objective. MLM training randomly masks a fraction of the words in the input to the

Transformer and maximizes the log likelihood of the masked words. Note that this is similar

to the Continuous Bag-of-Words (CBOW) model used for word representations where words

in a context window are used to predict the current word. However, CBOW learns a global

uncontextualized vector representation for each word and the task of contextualization is

expected to be learned by the downstream task models. BERT shows that not only word

representations but also contextualization can be learned through a generative model of

natural language.

2.4 MULTITASK AND TRANSFER LEARNING

Vision-language tasks such as VQA, Image Captioning, Text-Image Retrieval, Phrase

Grounding etc. have a lot in common. These tasks not only share concepts (e.g . a “dog”

refers to the same concept in each task) but likely involve similar inference over images and

text (e.g . matching words to image regions). Hence it is important to investigate ways of

sharing knowledge across different vision-language tasks. Below we discuss two perspectives

on sharing knowledge -

Multitask Learning. Multitask learning [40] refers to simultaneously learning to solve

multiple tasks. The most common way of multitask learning for vision applications is shar-

ing a set of base visual features across tasks with task-specific layers operating on the shared

10



features to address individual tasks. However, such an approach requires each task-specific

head to learn to reinterpret the base visual features and conflicting training signals could

lead to worse performance than training on individual tasks. Therefore, multitask learning

is most successful when the tasks are related. Multitask learning can be viewed as a regu-

larization alternative to uniformly penalizing all complexity, such as through weight decay,

by requiring that the representations or the inference algorithm work well on a related task.

Transfer Learning. Transfer learning [41] is a more general term that refers to learning a

skill or a concept from one task that is useful in solving another task. This is also referred

to as inductive transfer since learning from one task induces a more general principle or

representation that is applicable to another task. Multitask learning is one approach to

transfer learning which requires training on multiple tasks simultaneously while sharing

representations across tasks. Another popular approach is pretraining on one task and

finetuning on the other task. This approach suffers from catastrophic forgetting of the old

task and various methods like LWF [42], iCARL [43], and DeepInversion [44] seek to address

this problem. In addition to generalization across tasks, transfer learning also applies to

generalization of learning across domains for the same task (e.g . synthetic to real images),

learning complex skills from previously learned simpler skills (often studied under curriculum

learning [45, 46]), generalization of inference to novel concepts (e.g . generating captions

about novel objects unseen in captioning training data [47]), and generalization to parts of

the target data distribution that were undersampled or unseen during training.
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CHAPTER 3: GENERALIZABLE SHARED VISION-LANGUAGE
REPRESENTATIONS

3.1 INTRODUCTION

The application of knowledge learned while solving one task to solve another task is

known as transfer learning or inductive transfer. In literature, deep features or weights

learned through pre-training or multitask learning are used as foundation for learning new

tasks. However, the relation of features to each new task needs to be re-learned using the

new tasks data. In this chapter, we present a shared vision-language representation (SVLR)

space as a means to achieve inductive transfer between related vision-language tasks without

the need to re-learn this mapping.

We focus on transfer between visual recognition (VR) and attention-based visual question

answering (VQA). Towards this goal we create an SVLR module (Fig. 3.1) that represents

an image region as a vector using a CNN and a word as another vector of the same dimension

obtained by transforming the corresponding word2vec embedding through fully connected

layers. We then formulate a region’s score for a given class in VR in terms of inner product

of the region and word representation produced by SVLR. When the model is trained on

VR, SVLR representations of a region and words that apply to that region are mapped close

together while inapplicable words are mapped further away. We refer to this process as the

alignment of image and word representations.

Inference in VQA is now formulated to use these aligned representations in three ways.

First, each EdgeBox region proposal is represented as vector of pre-selected object and

attribute class scores computed using SVLR. Second, these region representations are pooled

to get image representation using attention scores as weights. These attention score are also

computed using SVLR. Here, we make an assumption that a region is relevant to a question

and candidate answer (QA) pair iff it contains a noun or an adjective present in the QA.

For example, to evaluate if the answer “red” is correct for the question “What color is the

skier’s jacket?”, a region is relevant iff it contains the adjective “red” or one of the nouns

“color”, “skier”, or “jacket”. Third, the pooled image representation is concatenated with

QA representations which is scored by a set of bimodal pooling and fully connected layers.

The QA representation used here are also constructed from SVLR word representations. In

our framework, not only do we expect training on VR to help VQA, but also training on

VQA to form newer region-word alignments and reinforce existing ones.
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Figure 3.1: Sharing region and word representations across multiple vision-
language tasks: The SVLR module projects image-regions and words into visual and
textual embeddings which are shared across tasks like Visual Recognition and VQA. The
models for individual tasks are formulated in terms of inner products of region and word
representations enforcing an alignment between them during training.

3.2 RELATED WORK

Our framework is motivated by the never-ending learning (NEL) paradigm [48, 49, 50,

51, 52]. NEL aims to continuously learn from multiple tasks such that learning to solve

newer problems becomes easier. Representation learning [53], multitask learning [40], and

curriculum learning [45] are different aspects of this larger paradigm. Inductive transfer

through shared representations is a necessary first step for NEL. Most works focus on build-

ing transferable representations within a single modality such as language or vision only. We

extend this framework to learn a shared vision-language representation space which enables

a much larger class of vision-language tasks to easily build on and contribute to the shared

representation. We now describe how our formulation of VR and VQA in the joint learning

setup differs from models that focus on these tasks independently.

Recognition using vision-language embeddings. Traditionally, visual recognition has

been posed as multiclass classification over discrete labels [54, 55, 56]. Using these recognizers

for tasks like VQA and image captioning is challenging because of the open-vocabulary nature

of these problems. Availability of continuous word embeddings (e.g. word2vec [57]) has

allowed reformulation of visual recognition as a nearest neighbor search in a learned image-
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language embedding space [58]. Such embeddings have been successfully applied to a variety

of tasks that require recognition such as image captioning [59, 60], phrase localization [61, 15],

referring expressions [62, 63], and VQA [8, 64, 65].

Our recognition model is related to previous open-vocabulary recognition and localization

models [58, 66, 67]. However, we specifically focus on the multitask setting where VR forms

a part of a higher-level vision-language task such as VQA. Since the SVLR module is reused

in both tasks with inner products in the embedding space forming the basis for both mod-

els, during joint training VQA provides a weak supervision for recognition as well. Fang

et al. [68] also learn object and attribute classifiers from weak supervision in the form of

image-caption pairs using a multiple instance learning (MIL) framework, but do not use

vision-language embeddings. Liu et al. [69] use VR annotation from Flickr30K entities [61]

to co-supervise attention in a caption generation model on the same dataset. Our work goes

further by allowing the supervision to come from separate datasets, thereby increasing the

amount of training data available for the shared parameters.

Visual Question Answering. VQA involves responding to a natural language query about

an image. Our VQA model is closely related to attention-based VQA models [70, 71, 10,

72, 73, 11, 74, 75, 76, 77] which attempt to compute a distribution (region relevance or

attention) over the regions/pixels in an image using inner product of image-region and the

full query embedding [72, 73, 71, 10]. Attention scores are used as weights to pool relevant

visual information which is usually combined with the language representation to create a

multimodal representation. Various methods of pooling such as elementwise-addition, mul-

tiplication, and outer-products have been explored [11, 70]. Attention models are themselves

an active area of research with applications in visual recognition [78, 79], caption genera-

tion [80], question answering [81, 82, 76], machine comprehension [83], translation [84, 85],

and neural turing machines [86].

Our model explicitly formulates attention in VQA as image localization of nouns and

adjectives mentioned in a candidate QA pair. Ilievski et al. [71] use a related approach for

attention. They use word2vec to map individual words in the question to the class labels of

a pre-trained object detector which then generates the attention map by identifying regions

for those labels. Tommasi et al. [77] similarly use a pre-trainined CCA [67] vision-language

embedding model to localize noun phrases, then extracts scene, attribute, and object features

to answer VQA questions. Our model differs from these methods in two ways: (i) vision-

language embeddings for VR allow for end-to-end trainability, and (ii) jointly training on

VR provides additional supervision of attention through a different (non-VQA) dataset.

Similar to our work, Andreas et al. [74, 75] build a compositional and interpretable model
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Figure 3.2: Joint Training on Visual Recognition(VR) and Visual Question An-
swering(VQA) with SVLR Module: The figure depicts sharing of image and word rep-
resentations through the SVLR module during joint training on object recognition, attribute
recognition, and VQA. The recognition tasks use object and attribute labelled regions from
Visual Genome while VQA uses images annotated with questions and answers from the VQA
dataset. The benefit of joint training is that while the VQA dataset does not provide region
groundings of nouns and adjectives in the QA (e.g. “fluffy”,“dog”), this complementary
supervision is provided by the Genome recognition dataset. Models for each task involve
image and word embeddings produced by SVLR module or their inner products (See Fig 3.3
for VQA model architecture).

for VQA that relies on the syntactic parse to dynamically arrange a set of parameterized

neural modules that are then applied to the image. Each module performs a specific function

such as localizing a specific word or verifying relative locations. In contrast, our approach

uses a static model but relies on our shared representations and attention based on the QA

parse for modularity and interpretability.

3.3 METHOD

We propose an SVLR module to facilitate greater inductive transfer across vision-language

tasks. Fig. 3.2 depicts joint training of SVLR along with VR and VQA models. We now de-

scribe the architecture of our proposed SVLR module, and inference and training procedures

for VR and VQA in terms of region and word representations produced by SVLR.
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3.3.1 SVLR

The SVLR module converts words and image-regions into feature representations that are

aligned to each other and shared across tasks.

Word Representations. The representation g(w) for a word w is constructed by applying

two fully connected layers (with 300 output units each) to pretrained word2vec representa-

tion [28] of w with ReLU after the first layer.

Region Representations. A region R is represented using two 300 dimensional feature

vectors fo(R) and fa(R) that separately encode the objects and attributes contained. We

used two representations instead of one to encourage disentangling of these two factors of

variation. For example, we do not expect “red” to be similar to “apple”, but we expect

fo(R) and fa(R) to be similar to g(“red”) and g(“apple”) if R depicts a red apple. The fea-

tures are constructed by extracting the average pooled features from Resnet [54] pretrained

on ImageNet and then passing through separate object and attribute networks. Both net-

works consist of two fully connected layers (with 2048 and 300 output units) with batch

normalization [87] and ReLU activations.

3.3.2 Recognition with SVLR

3.3.2.1 Inference

The visual recognition task is to classify image regions into one or more object and at-

tribute categories. The classification score for region R and object category w is fTo (R)g(w).

The classification score for an attribute category v is fTa (R)g(v). Attributes may include

adjectives and adverbs (e.g., “standing”). Though our recognition dataset has a limited

set of object categories O and attribute categories T , our model can produce classification

scores for any object or attribute label given its word2vec representation. In experiments,

the O and T consist of 1000 most frequent object and attribute categories in the Visual

Genome dataset [15].

3.3.2.2 Training

Our VR model is trained using the Visual Genome dataset which provides image regions

annotated with object and attribute labels. VR uses only the parameters for the embedding
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functions fo, fa and g that are part of the SVLR module. The parameters of fo receive

gradients from the object loss while those of fa receive gradients from the attribute loss.

The parameters of word embedding model g receive gradients from both losses.

Object loss. We use a multi-label loss as object classes may not be mutually exclusive (e.g.,

“man” is a “person”). For a region Rj, we denote the set of annotated object categories

and their hypernyms extracted from WordNet [88] by Hj. The object loss forces the true

labels and their hypernyms to score higher than all other object labels by a margin ηobj. For

a batch of M samples {(Rj,Hj)}Mj=1 the object loss is:

Lobj =
1

M

M∑
j=1

1

|Hj|
∑
l∈Hj

1

|O|
∑

k∈O\Hj

max{0, ηobj + fTo (Rj)g(k) − fTo (Rj)g(l)} (3.1)

Attribute Loss. The attribute loss is a multi-label classification loss with two differences

from object classification. Attribute labels are even less likely to be mutually exclusive than

object labels. As such, we predict each attribute with independent cross entropy losses.

We also weigh the samples based on fraction of positive labels in the batch to balance the

positive and negative labels in the dataset. For a batch with M samples {(Rj, Tj)}Mj=1 where

Tj is the set of attributes annotated for region Rj, the attribute loss is:

Latr =
1

M

M∑
j=1

∑
t∈T

1 [t ∈ Tj] (1− Γ(t)) log
[
σ(fTa (Rj)g(t))

]
+

1 [t /∈ Tj] Γ(t) log
[
1− σ(fTa (Rj)g(t))

]
(3.2)

where σ is a sigmoid activation function and Γ(t) is the fraction of positive samples for

attribute t in the batch.

3.3.3 VQA with SVLR

3.3.3.1 Inference

Our VQA model is illustrated in Fig. 3.3. The input to our VQA model is an image, a ques-

tion, and a candidate answer. Regions are extracted from the image using Edge Boxes [13].

The same SVLR module used by VR is explicitly applied to VQA for attention and answer

scoring. Our system assigns attention scores to each region according to how well it matches

words in the question/answer, then scores each answer based on the question, answer, and

attention-weighted scores for all objects (O) and attributes (T ).
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Figure 3.3: Inference in our VQA model: The image is first broken down into
Edge Box region proposals[13]. Each region R is represented by visual category scores
s(R) = [so(R), sa(R)] obtained using the visual recognition model. Using the SVLR module,
the regions are also assigned an attention score using the inner products of region features
with representations of nouns and adjectives in the question and answer. The region features
are then pooled using the relevance scores as weights to construct the attended image repre-
sentation. Finally, the image and question/answer representations are combined and passed
through a neural network to produce a score for the input question-image-answer triplet.

Region Relevance. Unlike other attention models [11, 10] that are free to learn any corre-

lation between regions and question/answers, our attention model encodes an explicit notion

of vision-language grounding. Let R be the set of region proposals extracted from the im-

age, and N and J denote the set of nouns and adjectives in the (Q,A) pair. Each region

R ∈ R(I) is assigned an attention score a(R) as follows:

a′(R) = max
n∈N

fTo (R)g(n) + max
j∈J

fTa (R)g(j) (3.3)

a(R) =
exp(a′(R))∑

R′∈R(I) exp(a′(R′))
(3.4)

Thus, a region’s attention score is the sum of maximum adjective and noun scores for

words mentioned in the question or answer (which need not be in sets O and T ).

Image Representation. To score an answer, the content of region R is encoded using the
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VR scores for all objects and attributes in O and T , as presence of unmentioned objects or

attributes may help answer the question. The image representation is an attention-weighted

average of these scores across all regions:

f(I) =
∑

R∈R(I)

a(R)

[
so(R)

sa(R)

]
(3.5)

where I is the image, so(R) are the scores for 1000 objects in O for each image region R,

sa(R) are the scores for 1000 attributes in T , and a(R) is the attention score.

Question/Answer Representation. To construct representations q(Q) and a(A) for the

question and answer, we follow Shih et al. [73], dividing question words into 4 bins, averaging

word representations in each bin, and concatenating the bin representations resulting in a

1200 (= 300 × 4) dimensional vector q(Q). The answer representation a(A) ∈ R300 is ob-

tained by averaging the word representations of all answer words. The word representations

used here are produced by the SVLR module.

Answer Scoring. We combine the image and Q/A representations to jointly score the

(Q, I, A) triplet. To ensure equal contribution of language and visual features, we apply

batch normalization [87] on linear transformations of these features before adding them

together to get a bimodal representation β(Q, I, A) ∈ R2500:

β(Q, I, A) = B1(W1f(I)) + B2

(
W2

[
q(Q)

a(A)

])
(3.6)

Here, B1,B2 denote batch normalization and W1 ∈ R2500×2000 and W2 ∈ R2500×1500 define

the linear transformations. The bimodal representation is:

S(Q, I, A) = W3 ReLU(β(Q, I, A)) (3.7)

with W3 ∈ R1×2500.

3.3.3.2 Training

We use the VQA dataset [8] for training parameters of our VQA model: W1,W2,W3, and

scales and offsets of batch normalization layers. In addition, the VQA loss backpropagates

into fo, fa, and g which are part of the SVLR module. Each sample in the dataset consists
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of a question Q about an image I with list of answer options including a positive answer A+

and N negative answers {A−(i)|i = 1, · · · , N}.
The VQA loss encourages the correct answer A+ to be scored higher than all incorrect an-

swer options {A−(i)|i = 1, · · · , N} by a margin ηans. Given batch samples {(Qj, Ij, Aj)}Pj=1,

the loss is written as

Lans =
1

NP

P∑
j=1

N∑
i=1

max{0, ηans + S(Qj, Ij, A
−
j (i))− S(Qj, Ij, A

+
j )} (3.8)

3.3.3.3 Zero-Shot VQA

The representations produced by SVLR module should be directly usable in related vision-

language tasks without any additional learning. To demonstrate this zero-shot cross-task

transfer, we train the SVLR module using Genome VR data only and apply to VQA. Since

bimodal pooling and scoring layers cannot be learned without VQA data, we use a proxy

scoring function constructed using region-word scores only. For each region, we compute

pq(R) as the sum of its scores for the maximally aligned question nouns and question adjec-

tives (Eq. 3.3 with only question words). A score pa(R) is similarly computed using answer

nouns and adjectives. The final score for the answer is defined by

S(Q, I, A) =
∑
R∈R

a(R) min(pq(R), pa(R)) (3.9)

where a is the attention score computed using Eq. 3.4. Therefore, the highest score is given

to QA pairs where question as well as answer nouns and adjectives can be localized in the

image. Note that since the model is not trained on even a single question from VQA, the

zero-shot VQA task also shows that our model does use the image to answer questions

instead of solely relying on the language prior which is a common concern with most VQA

models [89, 90].

3.4 EXPERIMENTS

Our experiments investigate the extent to which using SVLR as a core representation

improves transfer in multitask learning. We first analyze how including the VR task improves

VQA (Sec. 3.4.2, Tab. 3.1). We find that using SVLR doubles the improvement compared to

standard multitask learning, and demonstrate performance well above chance in a zero-shot

setup (trained only on VR, applied to VQA). We then analyze improvement to VR due
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Figure 3.4: Interpretable inference in VQA: Our model produces interpretable interme-
diate computation for region relevance and object/attribute predictions for the most relevant
regions. Our region relevance explicitly grounds nouns and adjectives from the Q/A input
in the image. We also show object and attribute predictions for the most relevant region
identified for a few correctly answered questions. The relevance masks are generated from
relevance scores projected back to their source pixels locations.

to training with (weakly supervised) VQA (Sec. 3.4.2, Fig. 3.5). We find moderate overall

improvements (1.2%), with the largest improvements for classes that have few VR training

examples. We also quantitatively evaluate how well our attention maps correlate with that

of humans using data provided by [91] in Table 3.1.

3.4.1 Datasets

Our model is trained on two separate datasets: one for VQA supervision, one for visual

recognition (attributes and object classification). We use the image-question-answer anno-

tation triplets from Antol et al. [8] and bounding box annotations for object and attribute

categories from Visual Genome [15].

3.4.2 Inductive Transfer from VR to VQA

We evaluate inductive transfer from VR to VQA in both joint training and zero-shot

VQA scenarios.

Joint Training. The VR models and VQA model are simultaneously trained using object
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VQA Only 53.5 70.5 53.6 56.8 89.8 81.8 41.9 45.9 49.0 58.3 33.8 38.4 53.9 45.8 80.2 56.0 54.5 39.2 82.1 62.9

Joint Multitask 59.4 71.8 54.6 58.3 91.0 81.9 43.8 46.4 50.8 59.2 32.3 39.4 53.9 47.0 80.4 57.1 56.7 39.8 82.2 64.1

Joint SVLR 62.1 74.1 57.9 60.0 91.1 82.8 41.6 52.9 52.0 61.1 33.6 39.0 51.3 48.6 81.4 58.5 58.8 38.8 83.0 65.3
Zero-Shot VQA 18.8 21.0 27.4 31.4 22.0 17.1 13.9 11.6 20.6 22.9 12.7 0.7 7.2 26.1 13.5 19.2 22.4 1.2 13.3 16.4

Table 3.1: Inductive transfer from VR to VQA through SVLR in joint training and
zero-shot settings: We evaluate the performance of our model with SVLR module trained
jointly with VR and VQA supervision (provided by Genome and VQA datasets respectively)
on the VQA task. We compare this jointly-trained model to a model trained on only VQA
data. We also compare to a traditional multitask learning setup that is jointly trained on
VQA and VR (i.e. uses same amount of data as Joint SVLR) and shares visual features but
does not use the object and attribute word embeddings for recognition. While multitask
learning outperforms VQA-only model, using the SVLR module doubles the improvement.
Our model is most suited for the question types in bold that require visual recognition
without specialized skills like counting or reading. Formulation of VR and attention in VQA
in terms of inner products between word and region representations enables Zero-Shot VQA.
In this setting we train on Genome VR data and apply to VQA val (Sec 3.4.2).

and attribute annotations from Genome, and Q/A annotations from the VQA dataset. The

common approach to joint training is to use a common network for extracting image fea-

tures (e.g. class logits from ResNet), which feeds into the task-specific networks as input.

We refer to this approach in Table 3.1 as Joint Multitask. This baseline is implemented by

replacing g(y) (see Fig. 3.2) with a trainable set of vectors hy for each of the predetermined

1000 object and 1000 attribute categories in the VR models. The embedding g(y) is still

in the VQA model, but is no longer shared across tasks. Our proposed Joint SVLR out-

performs VQA-only by 2.4%, doubling the 1.2% improvement achieved by Joint Multitask.

Our formulation of VR and VQA tasks in terms of shared word-region representations more

effectively transfers recognition knowledge from VR than shared features. The gain is often

larger on questions that involve recognition (in bold in Table 3.1). For example, what color

questions improve by 8.6% due to SVLR.

Zero-Shot VQA. We evaluate on Zero-shot VQA to further highlight transfer from VR

to VQA. We train on only Genome VR annotations but test on VQA val. The model has

not seen any Q/A training data, but achieves an overall accuracy of 16.4% where random

guessing yields 5.6% (18 choices). Our zero-shot system does not exploit language priors,

which alone can score as high as 54.0% [73]. This shows that some knowledge can be directly
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Figure 3.5: Transfer from VQA to Object Recognition: Each cell’s color reflects the
mean change in accuracy for classes within the corresponding frequency ranges of both
datasets’ training split. Most gains are in nouns rare in Genome but common in VQA (top
left), suggesting that the weak supervision provided by training VQA attention augments
recognition performance via the SVLR. The numbers in each cell show the Genome-only
mean accuracy +/- the change due to SVLR multitask training, followed by the number of
classes in the cell in parentheses.

applied to related tasks using SVLR without additional training.

3.4.3 Inductive Transfer from VQA to VR

We compare the performance of our SVLR based model trained jointly on VQA and VR

data with a model trained only on Genome data to analyze transfer from VQA to VR.

Genome test is used for evaluation. We observe an increase in the overall object recognition

accuracy from 43.3% to 44.5%, whereas average attribute accuracy remained unchanged at

36.9%. In Fig. 3.5, we show that nouns that are rare in Genome (left columns) but have 20

or more examples in VQA (upper rows) benefit the most from weak supervision provided

by VQA. On average, we measure improvement from 21% to 32% for the 8 classes that

have fewer than 125 examples in Genome train but occur more than 160 times in VQA

questions. We conducted the same analysis on Genome attributes, but did not observe any
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Figure 3.6: Mean Spearman rank-correlation between model predicted and human
attention at various thresholds.Each threshold point defines a subset of the dataset for
which the human attention correlation with the synthetic center heatmap is below that
threshold value. For example: the first sample point of each curve is the mean correlation
of each model with human attention, measured on a subset in which the human attention’s
correlation with the center heatmap is less than or equal to 0. As can be seen, the attention
maps produced by the proposed SVLR model correlate with human attention significantly
more than other models. As the threshold approaches 1, the synthetic center heatmap
baseline outperforms all proposed models, confirming that the majority of the questions
are about something in the center of the image. Note that due to slight differences in
implementations, the subsets at ≤ 0 differ slightly from those used in [91]

notable pattern, possibly due to the inherent difficult in evaluating the multi-label attribute

classification problem (the absence of attributes is not annotated in Genome).

3.4.4 Interpretable Inference for VQA

As shown in Fig. 5.5, our VQA model produces interpretable intermediate outputs such

as region relevance and visual category predictions, similar to [77]. The answer choice is

explained by the object and attribute predictions associated with the most relevant regions.

Because relevance is posed as the explicit localization of words in the question and answer,

we can qualitatively evaluate the relevance prediction by verifying that the predicted regions

match said words.

We also quantitatively evaluate our attention using collected human attention maps from

Das et al. [91] in Figure 3.6. We compare the correlation of our attention maps with human
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attention on subsets of human-attention maps. The subsets are chosen based on their cor-

relation with center-focus heatmap. Our proposed SVLR model significantly outperforms

other models we compare with. However, we note that a center-focused heatmap baseline

still outperforms all models, signifying that the main topic of a question is very often located

in the center of the image. Learned attention models appear to have better correlation with

human attention at lower thresholds where the human attention correlates poorly with the

center-focused heatmap – a result also demonstrated in [91].

3.5 CONCLUSION

Humans continuously improve their representation of the world with every new experience

and use this world model to learn new skills. We attempt to achieve this behavior for the class

of vision-language models using shared and aligned image and word representations. Using

visual recognition and VQA tasks as examples, we demonstrate the ability of the proposed

shared representations to enhance inductive transfer between tasks while simultaneously

making of complex systems like VQA more interpretable.
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CHAPTER 4: WORD EMBEDDINGS FROM VISUAL CO-OCCURRENCES

4.1 INTRODUCTION

Word embeddings, i.e., compact vector representations of words, are an integral com-

ponent in many language [92, 93, 94, 95, 96, 97, 98] and vision-language models [99, 100,

101, 102, 103, 104, 105, 106, 18, 107, 17, 108, 109]. These word embeddings, e.g ., GloVe

and word2vec, are typically learned from large-scale text corpora by modeling textual co-

occurrences. However, text often consists of interpretations of concepts or events rather than

a description of visual appearance. This limits the ability of text-only word embeddings to

represent visual concepts.

To address this shortcoming, we propose to gather co-occurrence statistics of words based

on images and learn word embeddings from these visual co-occurrences. Concretely, two

words co-occur visually if both words are applicable to the same image or image region. We

use four types of co-occurrences as shown in Fig. 4.1: (1) Object-Attribute co-occurrence

between an object in an image region and the region’s attributes; (2) Attribute-Attribute

co-occurrence of a region; (3) Context co-occurrence which captures joint object appearance

in the same image; and (4) Object-Hypernym co-occurrence between a visual category and

its hypernym (super-class).

Ideally, for reliable visual co-occurrence modeling of a sufficiently large vocabulary (a

vocabulary size of 400K is typical for text-only embeddings), a dataset with all applicable

vocabulary words annotated for each region in an image is required. While no visual dataset

Figure 4.1: Visual co-occurrences are a rich source of information for learning
word meanings. The figure shows regions annotated with words and attributes in an
image, and the four types of visual co-occurrences used for learning ViCo embeddings.
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exists with such exhaustive annotations (many non-annotated words may still be applicable

to an image region), large scale datasets like VisualGenome [110] and ImageNet [2] along

with their WordNet [111] synset annotations provide a good starting point. We use Ima-

geNet annotations augmented with WordNet hypernyms to compute Object-Hypernym co-

occurrences while the remaining types of co-occurrence are computed from VisualGenome’s

object and attribute annotations.

To learn ViCo, i.e., word embeddings from Visual Co-occurrences, we could concate-

nate GloVe-like embeddings trained separately for each co-occurrence type via a log-bilinear

model. However, in this näıve approach, the dimensionality of the learned embeddings scales

linearly with the number of co-occurrence types. To avoid this linear scaling, we extend the

log-bilinear model by formulating a multi-task problem, where learning embeddings from

each co-occurrence type constitutes a different task with compact trainable embeddings

shared among all tasks. In this formulation the embedding dimension can be chosen inde-

pendently of the number of co-occurrence types.

To test ViCo’s ability to capture similarities and differences between visual concepts,

we analyze performance in an unsupervised clustering and a zero-shot-like visual general-

ization setting. The clustering analysis is performed on a set of most frequent words in

VisualGenome which we manually label with coarse and fine-grained visual categories. For

the zero-shot-like setting, we use CIFAR-100 with different splits of the 100 categories into

seen and unseen sets. In both cases, ViCo augmented GloVe outperforms GloVe, random

vectors, vis-w2v, or their combinations. Through a qualitative analogy question answering

evaluation, we also find ViCo embedding space to better capture relations between visual

concepts than GloVe.

We also evaluate ViCo on five downstream tasks – a discriminative attributes task, and

four vision-language tasks. The latter includes Caption-Image Retrieval, VQA, Referring

Expression Comprehension, and Image Captioning. Systems using ViCo outperform those

using GloVe for almost all tasks and metrics.

While learned embeddings are typically believed to be important for vision-language tasks,

somewhat surprisingly, we find random embeddings compete tightly with learned embeddings

on all vision-language tasks. This suggests that either by nature of the tasks, model design,

or simply training on large datasets, the current state-of-the-art vision-language models do

not benefit much from learned embeddings. Random embeddings perform significantly worse

than learned embeddings in our clustering, partitioning, and zero-shot analysis, as well as

the discriminative attributes task, which does not involve images.

To summarize our contributions: (1) We develop a multi-task method to learn a word

embedding from multiple types of co-occurrences; (2) We show that the embeddings learned
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from multiple visual co-occurrences, when combined with GloVe, outperform GloVe alone

in unsupervised clustering and zero-shot-like analysis, as well as on multiple vision-language

tasks; (3) We find that performance of supervised vision-language models is relatively in-

sensitive to word embeddings, with even random embeddings leading to nearly the same

performance as learned embeddings. To the best of our knowledge, our study provides the

first empirical evidence of this unintuitive behavior for multiple vision-language tasks.

4.2 RELATED WORK

Here we describe non-associative, associative, and the most recent contextual models of

word representation.

Non-Associative Models. Semantic Differential (SD) [112] is among the earliest attempts

to obtain vector representations of words. SD relies on human ratings of words on 50 scales

between bipolar adjectives, such as ‘happy-sad’ or ‘slow-fast.’ Osgood et al . [112] further

reduced the 50 scales to 3 orthogonal factors. However, the scales were often vague (e.g ., is

the word ‘coffee’ ‘slow’ or ‘fast’) and provided a limited representation of the word mean-

ing. Another approach involved acquiring word similarity annotations followed by applying

Multidimensional Scaling (MDS) [113] to obtain low dimensional (typically 2-4) embed-

dings and then identifying meaningful clusters or interpretable dimensions [114]. Like SD,

the MDS approach lacked representation power, and embeddings and their interpretations

varied based on words (e.g ., food names [114], animals [115], etc.) to which MDS was applied.

Associative Models. The hypothesis underlying associative models is that word-meaning

may be derived by modeling a word’s association with all other words. Early attempts in-

volved factorization of word-document [24] or word-word [25] co-occurrence matrices. Since

raw co-occurrence counts can span several orders of magnitude, transformations of the

co-occurrence matrix based on Positive Pointwise Mutual Information (PPMI) [116] and

Hellinger distance [26] have been proposed. Recent neural approaches like the Continuous

Bag-of-Words (CBOW) and the Skip-Gram models [117, 118, 119] learn from co-occurrences

in local context windows as opposed to global co-occurrence statistics. Unlike global matrix

factorization, local context window based approaches use co-occurrence statistics rather inef-

ficiently because of the requirement of scanning context windows in a corpus during training

but performed better on word-analogy tasks. Levy et al . [29] later showed that Skip-Gram

model with negative-sampling performs implicit matrix factorization of a PMI word-context

matrix.
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Figure 4.2: Log-bilinear models and our multi-task extension. We show loss compu-
tation of different approaches for learning word embeddings wi and wj for words i and j.
The embeddings are denoted by colored vertical bars. (i) shows GloVe’s log-bilinear model.
(ii) is our multi-task extension to learn from multiple co-occurrence matrices. Word embed-
dings wi and wj are projected into a dedicated space for each co-occurrence type t through
transformation φt. Log-bilinear losses are computed in the projected embedding spaces. (iii)
shows an approach where the different colored regions of wi (or wj) are allocated to learn
from different co-occurrence types. This approach, equivalent to training separate embed-
dings followed by concatenation, can be implemented in our multi-task formulation using a
select transform (Tab. 4.1). Tab. 4.4 shows that an appropriate choice of φ (e.g ., linear) in
the multi-task framework leads to more compact embeddings than (iii) without sacrificing
performance since the correlation between different co-occurrence types is utilized.

Our work is most closely related to GloVe [27] which combines the efficiency of global

matrix factorization approaches with the performance obtained from modelling local con-

text. We extend GloVe’s log-bilinear model to simultaneously learn from multiple types of

co-occurrences. We also demonstrate that visual datasets annotated with words are a rich

source of co-occurrence information that complements the representations learned from text

corpora alone.

Visual Word Embeddings. There is some work on incorporating image representations

into word embeddings. vis-w2v [120] uses abstract (synthetic) scenes to learn visual relat-

edness. The scenes are clustered and cluster membership is used as a surrogate label in

a CBOW framework. Abstract scenes have the advantage of providing good semantic fea-

tures for free but are limited in their ability to match the richness and diversity of natural

scenes. However, natural scenes present the challenge of extracting good semantic features.

Our approach uses natural scenes but bypasses image feature extraction by only using co-

occurrences of annotated words. ViEW [121] is another approach to visually enhance existing

word embeddings. An autoencoder is trained on pre-trained word embeddings while match-

ing intermediate representations to visual features extracted from a convolutional network
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trained on ImageNet. ViEW is also limited by the requirement of good image features.

Contextual Models. Embeddings discussed so far represent individual words. However,

many language understanding applications demand representations of words in context (e.g .,

in a phrase or sentence) which in turn requires to learn how to combine word or character

level representations of neighboring words or characters. The past year has seen several

advances in contextualized word representations through pre-training on language models

such as ELMo [37], OpenAI GPT [122], and BERT [39]. However, building mechanisms

for representing context is orthogonal to our goal of improving representations of individual

words (which may be used as input to these models).

4.3 LEARNING VICO

We describe the GloVe formulation for learning embeddings from a single co-occurrence

matrix in Sec. 4.3.1 and introduce our multi-task extension to learn embeddings jointly from

multiple co-occurrence matrices in Sec. 4.3.2. Sec. 4.3.3 describes how co-occurrence count

matrices are computed for each of the four co-occurrence types.

4.3.1 GloVe: Log-bilinear Model

Let Xij denote the co-occurrence count between words i and j in a text corpus. Also

let N be the list of word pairs with non-zero co-occurrences. GloVe learns d-dimensional

embeddings wi ∈ Rd for all words i by optimizing

min
w,b

∑
(i,j)∈N

f(Xij)(w
T
i wj + bi + bj − logXij)

2, (4.1)

where f : R → R is a weighting function that assigns lower weight to less frequent, noisy

co-occurrences and bi is a learnable bias term for word i.

Intuitively, the program in Eq. (4.1) learns word embeddings such that for any word

pair with non-zero co-occurrence, the dot product wTi wj approximates the log co-occurrence

count up to an additive constant. The word meaning is derived by simultaneously modeling

the degrees of association of a single word with a large number of other words [1]. We also

refer the reader to [27] for more details.

Note the slight difference between the objective in Eq. (4.1) and the original GloVe objec-

tive: GloVe replaces wj and bj with w̃j (context vector) and b̃j which are also trainable. The

GloVe vectors are obtained by averaging wi and w̃i. However, as also noted in [27], given
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Transforms d dt φt

select (200) 200 50 ∀ t
φt(w) = [w[it0], · · · , w[it49]]

where {it0, · · · , it49} are indices
pre-allocated for t in {0, · · · , 200}

linear (50) 50 50 ∀ t φt(w) = Atw
where At ∈ R50×50

linear (100) 100 50 ∀ t φt(w) = Atw
where At ∈ R50×100

linear (200) 200 50 ∀ t φt(w) = Atw
where At ∈ R50×200

Table 4.1: Description and parametrization of transforms. φt : Rd → Rdt is a trans-
form for co-occurrence type t ∈ T . select corresponds to approach (iii) in Fig. 4.2 that
concatenates separately trained dt dimensional embeddings.

the symmetry in the objective, both vectors should ideally be identical. We did not observe

a significant change in performance when using separate word and context vectors.

4.3.2 Multi-task Log-bilinear Model

We now extend the log-bilinear model described above to jointly learn embeddings from

multiple co-occurrence count matrices X t, where t ∈ T refers to a type from the set of types

T . Also let Nt and Zt be the list of word pairs with non-zero and zero co-occurrences of

type t respectively. We learn ViCo embeddings wi ∈ Rd for all words i by minimizing the

following loss function

∑
t∈T

∑
(i,j)∈Nt

(φt(wi)
Tφt(wj) + bti + btj − logX t

ij)
2 +

∑
t∈T

∑
(i′,j′)∈Zt

max(0, φt(wi′)
Tφt(wj′) + bti′ + btj′). (4.2)

Here φt : Rd → Rdt is a co-occurrence type-specific transformation function that maps ViCo

embeddings to a type-specialized embedding space. bti is a learned bias term for word i and

type t. We set function f(X) in Eq. (4.1) to the constant 1 for all X. Next, we discuss the

transformations φt, benefits of capturing different types of co-occurrences, use of the second

term in Eq. (4.2), and training details. Fig. 4.2 illustrates (i) GloVe and versions of our

model (ii,iii).

Transformations φt. To understand the role of the transformations φt in learning from mul-

tiple co-occurrence matrices, consider the näıve approach of concatenating |T | dt-dimensional
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Word Pair ViCo Obj-Attr Attr-Attr Obj-Hyp Context GloVe
crouch / squat 0.61 0.74 0.72 0.18 0.25 0.05

sweet / dessert 0.66 0.78 0.76 0.56 0.79 0.43
man / male 0.71 0.98 0.8 0.38 1 0.34

purple / violet 0.75 0.93 1 0.24 0.03 0.52
hosiery / sock 0.52 0.27 0.18 0.87 0.07 0.23

aeroplane / aircraft 0.73 0.43 0.07 0.87 0.75 0.43
bench / pew 0.63 0.67 0.09 0.79 -0.14 0.1

keyboard / mouse 0.19 0.63 0.19 0.09 0.95 0.52
laptop / desk 0.39 0.23 0.24 0.1 0.94 0.28

window / door 0.59 0.46 0.35 0.53 0.93 0.67
hair / blonde 0.16 0.56 0.32 -0.15 0.17 0.51
thigh / ankle 0.09 0.19 0.03 0.01 0.39 0.74

garlic / onion 0.36 -0.03 0.3 0.37 0.56 0.77
driver / car 0.27 0.16 0.26 0.12 0.53 0.71

girl / boy 0.41 0.38 0.22 0.44 0.74 0.83

Figure 4.3: Rich sense of relatedness through multiple co-occurrences. Differ-
ent notions of word relatedness exist but current word embeddings do not provide a way
to disentangle those. Since ViCo is learned from multiple types of co-occurrences with
dedicated embedding spaces for each (obtained through transformations φt), it can pro-
vide a richer sense of relatedness. The figure shows cosine similarities computed in GloVe,
ViCo(linear) and embedding spaces dedicated to different co-occurrence types (components
of ViCo(select)). For example, ‘hosiery’ and ‘sock’ are related through an object-hypernym
relation but not related through object-attribute or a contextual relation. ‘laptop’ and ‘desk’
on the other hand are related through context.

word embeddings learned separately for each type t using Eq. (4.1). Such an approach would

yield an embedding with d ≥ |T |mint dt dimensions. For instance, 4 co-occurrence types,

each producing embeddings of size dt = 50, leads to d = 200 dimensional final embeddings.

Thus, a natural question arises – Is it possible to learn a more compact representation by

utilizing the correlations between different co-occurrence types?

Eq. (4.2) is a multi-task learning formulation where learning from each type of co-occurrence

constitutes a different task. Hence, φt is equivalent to a task-specific head that projects the

shared word embedding w ∈ Rd to a type-specialized embedding space φt(w) ∈ Rdt . A

log-bilinear model equivalent to Eq. (4.1) is then applied for each co-occurrence type in the

corresponding specialized embedding space. We learn the embeddings w and parameters of

φt simultaneously for all t in an end-to-end manner.

With this multi-task formulation the dimensions of w can be chosen independently of |T |
or dt. Also note that the new formulation encompasses the näıve approach which is imple-

mented in this framework by setting d =
∑

t dt, and φt as a slicing operation that ‘selects’

dt non-overlapping indices allocated for type t. In our experiments, we evaluate this näıve
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Obj-Attr Attr-Attr Obj-Hyp Context Overall

Unique Words 15, 548 11, 893 11, 981 25, 451 35, 476

Non-zero entries
(in millions)

1.37 1.37 0.61 8.12 11.48

Table 4.2: Co-occurrence statistics showing the number of words and millions of non-
zero entries in each co-occurrence matrix. For reference, GloVe uses a vocabulary of 400, 000
words with 8-40 billion non-zero entries.

approach and refer to it as the select transformation. We also assess linear transformations

of different dimensions as described in Tab. 4.1. We find that 100 dimensional ViCo embed-

dings learned with linear transform achieve the best performance vs . compactness trade-off.

Role of max term. Optimizing only the first term given in Eq. (4.2) can lead to accidentally

embedding a word pair from Zt (zero co-occurrences) close together (high dot product). To

suppress such spurious similarities, we include the max term which encourages all word pairs

(i′, j′) ∈ Zt to have a small predicted log co-occurrence

log X̃ t
i′j′ = φt(wi′)

Tφt(wj′) + bti′ + btj′ . (4.3)

In particular, the second term in the objective linearly penalizes positive predicted log co-

occurences of word-pairs that do not co-occur.

Training details. Pennington et al . [27] report Adagrad to work best for GloVe. We found

that Adam leads to faster initial convergence. However, fine-tuning with Adagrad further

decreases the loss. For both optimizers, we use a learning rate of 0.01, a batch size of 1000

word pairs sampled from Nt and Zt each for all t, and no weight decay.

Multiple notions of relatedness. Learning from multiple co-occurrence types leads to a

richer sense of relatedness between words. Fig. 4.3 shows that the relationship between two

words may be better understood through similarities in multiple embedding spaces than just

one. For example, ‘window’ and ‘door’ are related because they occur in context in scenes,

‘hair’ and ‘blonde’ are related through an object-attribute relation, ‘crouch’ and ‘squat’ are

related because both attributes apply to similar objects, etc.

4.3.3 Computing Visual Co-occurrence Counts

To learn meaningful word embeddings from visual co-occurrences, reliable co-occurrence

count estimates are crucial. We use Visual Genome and ImageNet for estimating visual

co-occurrence counts. Specifically, we use object and attribute synset (set of words with
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the same meaning) annotations in VisualGenome to get Object-Attribute (oa), Attribute-

Attribute (aa), and Context (c) co-occurrence counts. ImageNet synsets and their ancestors

in WordNet are used to compute Object-Hypernym (oh) counts. Tab. 4.2 shows the number

of unique words and non-zero entries in each co-occurrence matrix.

Let T = {oa, aa, c, oh} denote the set of four co-occurrence types and X t
ij denote the

number of co-occurrences of type t ∈ T between words i and j. We denote a synset and its

associated set of words as S. All co-occurrences are initialized to 0. We now describe how

each co-occurrence matrix X t is computed.

• Let O and A be the sets of object and attribute synsets annotated for an image

region. For each region in VisualGenome, we increment Xoa
ij by 1, for each word pair

(i, j) ∈ So × Sa, and for all synset pairs (So,Sa) ∈ O × A. Xoa
ji is also incremented

unless i = j.

• For each region in VisualGenome, we increment Xaa
ij by 1, for each word pair (i, j) ∈

Sa1 × Sa2 , and for all synset pairs (Sa1 ,Sa2) ∈ A×A.

• Let C be the union of all object synsets annotated in an image. For each image in

VisualGenome, Xc
ij is incremented by 1, for each word pair (i, j) ∈ Sc1 × Sc2 , and for

all synset pairs (Sc1 ,Sc2) ∈ C × C.

• Let H be a set of object synsets annotated for an image in ImageNet and its ancestors

in WordNet. For each each image in ImageNet, Xoh
ij is incremented by 1, for each word

pair (i, j) ∈ Sh1 × Sh2 , and for all synset pairs (Sh1 ,Sh2) ∈ H ×H.

4.4 EXPERIMENTS

We analyze ViCo embeddings with respect to the following properties: (1) Does unsu-

pervised clustering result in a natural grouping of words by visual concepts? (Sec. 4.4.1);

(2) Do the word embeddings enable transfer of visual learning (e.g ., visual recognition) to

classes not seen during training? (Sec. 4.4.2); (3) How well do the embeddings perform on

downstream applications? (Sec. 4.4.3); (4) Does the embedding space show word arithmetic

properties (land− car + aeroplane = sky)? (Sec. 4.4.4).

Data for clustering analysis. To answer (1) we manually annotate 495 frequent words

in VisualGenome with 13 coarse (see legend in the t-SNE plots in Fig. 4.4) and 65 fine

categories (see appendix for the list of categories).
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(a) GloVe+ViCo(linear) (b) GloVe (c) Fine Categories (d) Coarse Categories

t-SNE Plots Clustering Analysis

Figure 4.4: Unsupervised Clustering Analysis. (a,b) Qualitative evaluation with t-
SNE: Plots show that ViCo augmented GloVe results in tighter, more homogenous clusters
than GloVe. Marker shape encodes the annotated coarse category and color denotes if the
word is used more frequently as an object or an attribute; (c,d) Quantitative evaluation:
Plots show clustering performance of different embeddings measured through V-Measure at
different number of clusters. All ViCo based embeddings outperform GloVe for both fine and
coarse annotations (Sec. 4.4.1). See Tab. 4.3 and Tab. 4.4 for average performance across
cluster numbers. Best viewed in color on a screen.

Data for zero-shot-like analysis. To answer (2), we use CIFAR-100 [123]. We generate 4

splits of the 100 categories into disjoint Seen (categories used for training visual classifiers)

and Unseen (categories used for evaluation) sets. We use the following scheme for splitting:

The list of 5 sub-categories in each of the 20 coarse categories (provided by CIFAR) is sorted

alphabetically and the first k categories are added to Seen and the remaining to Unseen for

k ∈ {1, 2, 3, 4}.

4.4.1 Unsupervised Clustering Analysis

The main benefit of word vectors over one-hot or random vectors is the meaningful

structure captured in the embedding space: words that are closer in the embedding space

are semantically similar. We hypothesize that ViCo represents similarities and differences

between visual categories that are missing from GloVe.

Qualitative evidence to support this hypothesis can be found in t-SNE plots shown in

Fig. 4.4, where concatenation of GloVe and ViCo embeddings leads to tighter, more ho-

mogenous clusters of the 13 coarse categories than GloVe.

To test the hypothesis quantitatively, we cluster word embeddings with agglomerative

clustering (cosine affinity and average linkage) and compare to the coarse and fine ground

truth annotations using V-Measure which is the harmonic mean of Homogeneity and Com-

pleteness scores. Homogeneity is a measure of cluster purity, assessing whether all points

in the same cluster have the same ground truth label. Completeness measures whether all

points with the same label belong to the same cluster
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Plots (c,d) in Fig. 4.4 compare random vectors, GloVe, variants of ViCo and their combina-

tions (concatenation) for different number of clusters using V-Measure. Average performance

across different cluster numbers is shown in Tab. 4.3 and Tab. 4.4. The main conclusions

are as follows:

ViCo clusters better than other embeddings. Tab. 4.3 shows that ViCo alone outper-

forms GloVe, random, and vis-w2v based embeddings. GloVe+ViCo improves performance

further, especially for coarse categories.

WordNet is not the sole contributor to strong performance of ViCo. To verify that

ViCo’s gains are not simply due to the hierarchical nature of WordNet, we evaluate a version

of ViCo trained on co-occurrences computed without using WordNet, i.e., using raw word an-

notations in VisualGenome instead of synset annotations and without Object-Hypernym co-

occurrences. Tab. 4.3 shows that GloVe+ViCo(linear,100,w/o WordNet) outperforms GloVe

for both coarse and fine categories on both metrics. However, GloVe+ViCo(linear,100) does

see healthy gains over GloVe+ViCo(linear,100,w/o WordNet).

ViCo outperforms existing visual word embeddings. Tab. 4.3 evaluates performance

of existing visual word embeddings which are learned from abstract scenes [120]. wiki

and coco are different versions of vis-w2v depending on the dataset (Wikipedia or MS-

COCO [124, 125]) used for training word2vec for initialization. After initialization, both

models are trained on an abstract scenes (clipart images) dataset [126]. ViCo(linear,100)

outperforms both of these embeddings. GloVe+vis-w2v-wiki performs similarly to GloVe

and GloVe+vis-w2v-wiki-coco performs only slightly better than GloVe, showing that the

majority of the information captured by vis-w2v may already be present in GloVe.

Learned embeddings significantly outperform random vectors. Tab. 4.3 shows that

random vectors perform poorly in comparison to learned embeddings. GloVe+random per-

forms similarly to GloVe or worse. This implies that gains of GloVe+ViCo over GloVe are

not just an artifact of increased dimensionality.

Linear achieves similar performance as Select with fewer dimensions. Tab. ??

illustrates the ability of the multi-task formulation to learn a more compact representatio

than select (concatenating embeddings learned from each co-occurrence type separately)

without sacrificing performance. 50, 100, and 200 dimensional ViCo embeddings learned

with linear transformations, all achieve performance similar to select.
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Embeddings Dim. Fine Coarse

random(100) 100 0.34 0.15

GloVe 300 0.50 0.52

GloVe+random(100) 300+100 0.50 0.49

vis-w2v-wiki [120] 200 0.41 0.43

vis-w2v-coco [120] 200 0.45 0.4

GloVe+vis-w2v-wiki 300+200 0.5 0.52

GloVe+vis-w2v-coco 300+200 0.52 0.55

ViCo(linear,100) 100 0.60 0.59

GloVe+ViCo(linear,100) 300+100 0.61 0.65

GloVe+ViCo(linear,100, w/o WN) 300+100 0.54 0.58

Table 4.3: Comparing ViCo to other embeddings. All ViCo based embeddings outper-
form GloVe and random vectors. ViCo(linear,100) also outperforms vis-w2v. GloVe+vis-w2v
performs similarly to GloVe while GloVe+ViCo outperforms both GloVe and ViCo. Using
WordNet yields healthy performance gains but is not the only contributor to performance
since GloVe+ViCo(linear,100, w/o WN) also outperforms GloVe. Best and second best
numbers are highlighted in each column.

4.4.2 Zero-Shot-like Analysis

The ability of word embeddings to capture relations between visual categories enables

visual models trained on limited visual categories to generalize to larger sets unseen during

training. To assess this ability, we evaluate embeddings on their zero-shot-like object clas-

sification performance using the CIFAR-100 dataset. Note that our zero-shot-like setup is

slightly different from a typical zero-shot setup because even though the visual classifier is

not trained on unseen class images in CIFAR, annotations associated with images of unseen

categories in VisualGenome or ImageNet may be used to compute word co-occurrences while

learning word embeddings.

Model. Let f(I) ∈ Rn be the features extracted from image I using a CNN and let wc ∈ Rm

denote the word embedding for class c ∈ C. Let g : Rm → Rn denote a function that projects

word embeddings into the space of image features. We define the score sc(I) for class c as

cosine(f(I), g(wc)),

where cosine(·) is the cosine similarity. The class probabilities are defined as

pc(I) =
exp(sc(I)/ε)∑
c′∈C exp(sc′(I)/ε)

, (4.4)

where ε is a learnable temperature parameter. In our experiments, f(I) is a 64-dimensional

feature vector produced by the last linear layer of a 34-layer ResNet (modified to accept
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Embeddings Dim. Fine Coarse

ViCo(linear,50) 50 0.57 0.56

ViCo(linear,100) 100 0.60 0.59

ViCo(linear,200) 200 0.59 0.60

ViCo(select,200) 200 0.59 0.60

GloVe 300 0.50 0.52

GloVe+ViCo(linear,50) 300+50 0.60 0.66

GloVe+ViCo(linear,100) 300+100 0.61 0.65

GloVe+ViCo(linear,200) 300+200 0.60 0.65

GloVe+ViCo(select,200) 300+200 0.57 0.63

Table 4.4: Effect of transformations on clustering performance. The table compares
average performance across number of clusters. The linear variants achieve performance
similar to select with fewer dimensions. In fact, when used in combination with GloVe,
linear variants outperform select. Best and second best numbers are highlighted in each
column.

32× 32 CIFAR images) and g is a linear transformation.

Learning. The model (parameters of f , g, and ε) is trained on images from the set of seen

classes S ⊂ C. We use the Adam [110] optimizer with a learning rate of 0.01. The model is

trained with a batch size of 0.01 for 50 epochs.

Model Selection and Evaluation. The best model (among iteration checkpoints) is

selected based on seen class accuracy (classifying only among classes in S) on the test

set. The selected model is evaluated on unseen category ( U = C \ S) prediction accuracy

computed on the test set.

Fig. 4.5 compares chance performance (1/|U|), random vectors, GloVe, and GloVe+ViCo

on four seen/unseen splits. We show mean and standard deviation computed across four

runs (7× 4× 4 = 112 models trained in all). The key conclusions are as follows:

ViCo generalizes to unseen classes better than GloVe. ViCo based embeddings,

especially 200-dim. select and linear variants show healthy gains over GloVe. Note that this

is not just due to higher dimensions of the embeddings since GloVe+random(200) performs

worse than GloVe.

Learned embeddings significantly outperform random vectors. Random vectors

alone achieve close to chance performance, while concatenating random vectors to GloVe

degrades performance.
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Figure 4.5: Zero-Shot Analysis. The histogram compares the transfer learning ability of
a simple word embedding based object classification model. The x-axis denotes the number
of CIFAR-100 classes (m) used during training. During test, we evaluate the classifier on
its ability to correctly classify among the remaining (100−m) unseen classes. Results show
that GloVe+ViCo leads to better transfer to unseen classes than GloVe alone (Sec. 4.4.2).

Select performs better than Linear. Compression to 100-dimensional embeddings us-

ing linear transformation shows a more noticeable drop in performance as compared to the

select setting. However, GloVe+ViCo(linear,100) still outperforms GloVe in 3 out of 4 splits.

We compare random (chance performance), GloVe, GloVe+ViCo(linear), and GloVe+ViCo(select)

in Fig. 4.5. GloVe+ViCo variants yield significant performance gains over GloVe, and se-

lect consistently outperforms linear across all 4 seen-unseen splits. As expected, learned

embeddings (GloVe or ViCo based) perform significantly better than chance performance.

4.4.3 Downstream Task Evaluation

We now evaluate ViCo embeddings on a range of downstream tasks. Generally, we

expect tasks requiring better word representations of objects and attributes to benefit from

our embeddings. When using existing models, we initialize and freeze word embeddings so

that performance changes are not due to fine-tuning embeddings of different dimensions.

The rest of the model is left untouched except for the dimensions of the input layer where

the size of the input features needs to match the embedding dimension.
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Discr. Attr. Im-Cap Retr. VQA Ref. Exp. Image Captioning

Avg. F1 Recall@1 Accuracy Loc. Accuracy Captioning Metrics

Embeddings Dim. m± σ Im2Cap Cap2Im Overall Y/N Num. Other Val TestA TestB B1 B4 C S

random 300 50.03 ± 2.26 43.1 30.6 66.1 82.0 44.8 57.5 71.3 73.5 66.3 0.71 0.30 0.91 0.17

GloVe 300 63.85 ± 0.04 44.8 33.5 67.5 83.8 46.5 58.3 72.2 75.3 66.8 0.71 0.29 0.89 0.17

GloVe+random 300+100 63.88 ± 0.03 44.3 34.4 67.5 84.1 45.9 58.2 72.5 75.1 67.5 0.71 0.29 0.88 0.17

GloVe+ViCo(linear) 300+100 64.46 ± 0.17 46.3 34.2 67.7 84.4 46.6 58.4 72.7 75.5 67.5 0.71 0.29 0.89 0.17

Table 4.5: Comparing ViCo to GloVe and random vectors. GloVe+ViCo(linear)
outperforms GloVe and GloVe+random for all tasks and outperforms random for all tasks
except Image Captioning. While random vectors perform close to chance on the word-only
task, they compete tightly with learned embeddings on vision-language tasks. This sug-
gests that vision-language models are relatively insensitive to the choice of word embeddings.
Best and second best numbers in each column are highlighted.

Tab. 4.5 compares performance of embeddings on a word-only discriminative attributes

task and 4 vision-language tasks. On all tasks GloVe+ViCo outpeforms GloVe and GloVe+random.

Unlike the word-only task which depends solely on word representations, vision-language

tasks are less sensitive to word embeddings, with performance of random embeddings ap-

proaching learned embeddings.

Discriminative Attributes [127] is one of the SemEval 2018 challenges. The task requires

to identify whether an attribute word discriminates between two concept words. For example,

the word “red” is a discriminative attribute for word pair (“apple”, “banana”) but not for

(“apple”, “cherry”). Samples are presented as tuples of attribute and concept words and the

model makes a binary prediction. Performance is evaluated using class averaged F1 scores.

Let w1, w2, and a be the word embeddings (GloVe or ViCo) for the two concept words

and the attribute word. We compute the scores sg and sv for GloVe and ViCo using function

s(a, w1, w2) = cosine(a, w1)− cosine(a, w2), where cosine(·) is the cosine similarity. We then

learn a linear SVM over sg for the GloVe only model and over sg and sv for the GloVe+ViCo

model.

Caption-Image Retrieval is a classic vision-language task requiring a model to retrieve

images given a caption or vice versa. We use the open source VSE++ [30] implementation

which learns a joint embedding of images and captions using a Max of Hinges loss that

encourages attending to hard negatives and is geared towards improving top-1 Recall. We

evaluate the model using Recall@1 on MS-COCO.

Visual Question Answering [8, 128] systems are required to answer questions about
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an image. We compare the performance of embeddings using Pythia [17, 129] which uses

bottom-up top-down attention for computing a question-relevant image representation. Im-

age features are then fused with a question representation using a GRU operating on word

embeddings and fed into an answer classifier. Performance is evaluated using overall and

by-question-type accuracy on the test-dev split of the VQA v2.0 dataset.

Referring Expression Comprehension consists of localizing an image region based on a

natural language description. We use the open source implementation of MAttNet [130] to

compare localization accuracy with different embeddings on the RefCOCO+ dataset using

the UNC split. MAttNet uses an attention mechanism to parse the referring expression into

phrases that inform the subject’s appearance, location, and relationship to other objects.

These phrases are processed by corresponding specialized localization modules. The final

region scores are

Image Captioning involves generating a caption given an image. We use the Show and

Tell model of Vinyals et al . [131] which feeds CNN extracted image features into an LSTM

followed by beam search to sample captions. We report BLEU1 (B1), BLEU4 (B4), CIDEr

(C), and SPICE (S) metrics [132, 133, 134] on the MS-COCO test set.

4.4.3.1 Why are random vectors competitive with learned embeddings?

Tab. 4.5 shows that while GloVe+ViCo outperforms GloVe and GloVe+random, Random

vectors are surprisingly competitive with learned embeddings (both GloVe and ViCo) on

vision-language tasks. Below, we present a hypothesis for this behavior and test the hypoth-

esis on image to caption retrieval task.

Hypothesis: Given enough data, vision-language models learn to transform random vectors

to get useful intermediate word representations.

Test: Fig. 4.4.3.1 shows the performance of random and learned embeddings when trained

on different amounts of training data. We see that learned embeddings have a significant

advantage over random ones when the model is trained with only 1-2% of the available

training data but diminishing gains (green line) are observed with more data.

Reason for limited improvement of ViCo over Random and GloVe on VQA and

Captioning. Because of the above hypothesis and availability of sufficient training data
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Figure 4.6: Comparing random and learned embeddings for Im2Cap model trained with
varying amounts of data. We report average recall across 3 runs because of variance observed
during training.

for tasks like VQA and Image Captioning, gains due to learned embeddings (for both GloVe

and ViCo) are relatively small in comparison to random vectors.

However, we want to emphasize that our clustering, partitioning, and zero-shot analysis,

as well as the discriminative attributes task highlight the advantages of learned embeddings

over random embeddings, and ViCo over existing word embeddings. Finally, the ability to

represent multiple senses of relatedness (Fig. 3 in the main submission) also distinguishes

ViCo from existing word embeddings.

4.4.4 Exploring Embedding Space Structure

Previous work [118] has demonstrated linguistic regularities in word embedding spaces

through analogy tasks solved using simple vector arithmetics. Fig. 4.6 shows qualitatively

that ViCo embeddings possess similar properties, capturing relations between visual concepts

well.

4.5 CONCLUSION

This work shows that in addition to textual co-occurrences, visual co-occurrences are a

surprisingly effective source of information for learning word representations. The resulting

embeddings outperform text-only embeddings on unsupervised clustering, zero-shot gener-
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Analogy Answer Candidates GloVe ViCo

car:land::aeroplane:? ocean, sky, road, railway ocean sky

clock:circle::tv:? triangle, square, octagon, round triangle square

park:bench::church:? door, sofa, cabinet, pew door pew

sheep:fur::person:? hair, horn, coat, tail coat hair

monkey:zoo::cat:? park, house, church, forest park house

leg:trouser::wrist:? watch, shoe, tie, bandana bandana watch

yellow:banana::red:? strawberry, lemon, mango, orange mango strawberry

rice:white::spinach:? blue, green, red, yellow blue green

train:railway::car:? land, desert, ocean, sky land land

can:metallic::bottle:? wood, glass, cloth, paper glass glass

man:king::woman:? queen, girl, female, adult queen girl

can:metallic::bottle:? wood, plastic, cloth, paper plastic wood

train:railway::car:? road, desert, ocean, sky road ocean

Table 4.6: Answering Analogy Questions. Out of 30 analogy pairings tested, we found
both GloVe and ViCo to be correct 19 times, only ViCo was correct 8 times, and only Glove
was correct 3 times. Correct answers are highlighted.

alization, and various supervised downstream tasks. We also develop a multi-task extension

of GloVe’s log-bilinear model to learn a compact shared embedding from multiple types of

co-occurrences. Type-specific embedding spaces learned as part of the model help provide a

richer sense of relatedness between words.
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CHAPTER 5: CONTRASTIVE LEARNING FOR WEAKLY SUPERVISED
PHRASE GROUNDING

5.1 INTRODUCTION

Humans can learn from captioned images because of their ability to associate words to

image regions. For instance, humans perform such word-region associations while acquiring

facts from news photos, making a diagnosis from MRI scans and radiologist reports, or

enjoying a movie with subtitles. This word-region association problem is called word or

phrase grounding and is a crucial capability needed for downstream applications like visual

question answering, image captioning, and text-image retrieval.

Existing object detectors can detect and represent object regions in an image, and language

models can provide contextualized representations for noun phrases in the caption. However,

learning a mapping between these continuous, independently trained visual and textual

representations is challenging in the absence of explicit region-word annotations. We focus

on learning this mapping from weak supervision in the form of paired image-caption data

without requiring laborious grounding annotations.

Current state-of-the-art approaches [135, 136, 137] formulate weakly supervised phrase

grounding as a multiple instance learning (MIL) problem [138, 139]. The image can be

viewed as a bag of regions. For a given phrase, all images with captions containing the

phrase are treated as positive bags while remaining images are treated as negatives. Models

aggregate per region features or phrase scores to construct image-level predictions that can be

supervised with image-level labels in the form of phrases or captions. Common aggregation

approaches include max or mean pooling, noisy-OR [140], and attention [135, 139]. Popular

training objectives include binary classification loss [140] (whether the image contain the

phrase) or caption reconstruction loss [137] (generalization of binary classification to caption

prediction) or ranking objectives [136, 135] (do true image-caption or image-phrase pairs

score higher than negative pairs).

Fig. 5.1 provides an overview of our proposed contrastive training. We propose a novel

formulation of the weakly supervised phrase grounding problem as that of maximizing a

lower bound on mutual information between set of region features extracted from an image

and contextualized word representations. We use pretrained region and word representations

from an object detector and a language model and perform optimization over parameters of

word-region attention instead of optimizing the region and word representations themselves.

Intuitively, to compute mutual information with a word’s representation, attention must

discard nuisance regions in the word-conditional attended visual representation, thereby
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Figure 5.1: Overview of our contrastive learning framework. We begin by extract-
ing region and word features using an object detector and a language model respectively.
Contrastive learning trains a word-region attention mechanism as part of a compatibility
function φθ between the set of region features from an image and individual contextualized
word representations. The compatibility function is trained to maximize a lower bound
on mutual information with two losses. For a given caption word, Limg learns to produce
a higher compatibility for the true image than a negative image in the mini-batch. Llang
learns to produce a higher compatibility of an image with a true caption-word than with a
word in a negative caption. We construct negative captions by substituting a noun word
like “donut” in the true caption with contextually plausible but untrue words like “cookie”
using a language model.

selecting regions that match the word. For any given word, the learned attention thus

functions as a soft selection or grounding mechanism over regions.

Since computing MI is intractable, we maximize the recently introduced InfoNCE lower

bound [141] on mutual information. The InfoNCE bound requires a compatibility score

between each caption word and the image to contrast positive image and caption word

pairs with negative pairs in a minibatch. We use two objectives. The first objective (Limg
in Fig. 5.1) contrasts a positive pair with negative pairs with the same caption word but

different image regions. The second objective (Llang in Fig. 5.1) contrasts a positive pair

with negative pairs with the same image but different captions. We show empirically that

sampling negative captions randomly from the training data to optimize Llang does not

yield any gains over optimizing Limg only. Instead of random sampling, we propose to use

a language model to construct context-preserving negative captions by substituting a single

noun word in the caption.
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We design the compatibility function using a query-key-value attention mechanism. The

queries and keys, computed from words and regions respectively, are used to compute a

word-specific attention over each region which acts as a soft alignment or grounding between

words and regions. The compatibility score between regions and word is computed by

comparing attended visual representation and the word representation.

Our key contributions are: (i) a novel MI based contrastive training framework for weakly

supervised phrase grounding; (ii) an InfoNCE compatibility function between a set of regions

and a caption word designed for phrase grounding; and (iii) a procedure for constructing

context-preserving negative captions that provides ≈ 10% absolute gain in grounding per-

formance.

5.1.1 Related Work

Our work is closely related to three active areas of research. We now provide an overview

of prior arts in each.

Weakly Supervised Phrase Grounding. Weakly supervised phrase localization is typ-

ically posed as a multiple instance learning (MIL) problem [138, 139] where each image

is considered as a bag of region proposals. Images whose captions mention a word or a

phrase are treated as positive bags while rest of the images are treated as negatives for

that word or phrase. Features or scores for a phrase or the entire caption are aggregated

across all regions to make a prediction for the image. Common methods of aggregation

are max or average pooling, noisy-OR [140], or attention [137, 139]. With the ability to

produce image-level scores for pairs of images and phrases or captions, the problem becomes

an image-level fully-supervised phrase classification problem [140] or an image-caption re-

trieval problem [136, 135]. An alternatives to the MIL formulations is the approach of Ye et

al . [142] which uses statistical hypothesis testing approach to link concepts detected in an

image and words mentioned in the sentence. While all the above approaches assume paired

image-caption data, Wang et al . [143] recently address the problem of phrase grounding

without access to image-caption pairs. Instead they assume access to a set of scene and

color classifiers, and object detectors to detect concepts in the scene and use word2vec [144]

similarity between concept labels and caption words to achieve grounding.

MI-based Representation Learning. Recently MI-based approaches have shown promis-

ing results on a variety representation learning problems. Computing the MI between two

representations is challenging as we often have access to samples but not the underlying joint

distribution that generated the samples. Thus, recent efforts rely on variational estimation
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of MI [145, 146, 147, 141]. An overview of such estimators is discussed in [148, 149] while

the statistical limitations are reviewed in [150, 151].

In practice, MI-based representation learning models are often trained by maximizing an

estimation of MI across different transformations of data. For example, deep InfoMax [19]

maximizes MI between local and global representation using MINE [147]. Contrastive pre-

dictive coding [141, 152] inspired by noise contrastive estimation [153, 154] assumes an order

in the features extracted from an image and uses summary features to predict future fea-

tures. Contrastive multiview coding [155] maximizes MI between different color channels

or data modalities while augmented multiscale Deep InfoMax [20] and SimCLR [23] extract

views using different augmentations of data points. Since the infoNCE loss is limited by the

batch size, several previous work rely on memory banks [156, 157, 22] to increase the set of

negative instances.

Joint Image-Text Representation Learning. With the advances in both visual analysis

and natural language understanding, there has been a recent shift towards learning represen-

tation jointly from both visual and textual domains [158, 159, 160, 161, 162, 163, 164, 165,

166, 167]. Among these efforts, ViLBERT [160] and LXMERT [162] learn representation

from both modalities using two-stream transformers, applied to image and text indepen-

dently. In contrast, UNITER [165], VisualBERT [158], Unicoder-VL [164], VL-BERT [159]

and B2T2 [166] propose a unified single architecture that learns representation jointly from

both domains. Our method is similar to the first group, but differs in its fundamental goal.

Instead of focusing on learning a task-agnostic representation for a range of downstream

tasks, we are interested in the quality of region-phrase grounding emerged by maximizing

mutual information. Moreover, we rely on the language modality as a weak training signal

for grounding, and we perform phrase-grounding without any further finetuning.

5.2 METHOD

Consider the set of region features and contextualized word representation as two multi-

variate random variables. Intuitively, estimating MI between them requires extracting the

information content shared by these two variables. We model this MI estimation as maxi-

mizing a lower bound on MI with respect to parameters of a word-region attention model.

This maximization forces the attention model to downweight regions from the image that

do not match the word, and to attend to the image regions that contain the most shared

information with the word representation.

Sec. 5.2.1 describes MI and the InfoNCE lower bound. Sec. 5.2.2 introduces notation and
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InfoNCE based objective for learning phrase grounding from paired image caption data.

Sec. 5.2.3 presents the design of a word-region attention based compatibility function which

is part of the InfoNCE objective.

5.2.1 InfoNCE Lower Bound on Mutual Information

Let x ∈ X and y ∈ Y be random variables drawn from a joint distribution with density

p(x, y). The MI between x and y measures the amount of information that these two variables

share:

MI(x, y) = E(x,y)∼p(x,y)

[
log

p(x, y)

p(x)p(y)

]
, (5.1)

which is also the KullbackLeibler Divergence from p(x, y) to p(x)p(y).

However, computing MI is intractable in general because it requires a complete knowledge

of the joint and marginal distributions. Among the existing MI estimators, the InfoNCE [141]

lower bound provides a low-variance estimation of MI for high dimensional data, albeit being

biased [148]. The appealing variance properties of this estimator may explain its recent

success in representation learning [23, 141, 152, 167]. InfoNCE defines a lower bound on MI

by:

MI(x, y) ≥ log(k)− Lk(θ). (5.2)

Here, Lk is the InfoNCE objective defined in terms of a compatibility function φ parametrized

by θ: φθ : X×Y → R. The lower bound is computed over a mini-batch B of size k, consisting

of one positive pair (x, y) ∼ p(x, y) and k − 1 negative pairs {(x′i, y)}k−1i=1 where x′ ∼ p(x):

Lk(θ) = EB

[
− log

(
eφθ(x,y)

eφθ(x,y) +
∑k−1

i=1 e
φθ(x

′
i,y)

)]
. (5.3)

Oord et al . [141] showed that maximizing the lower bound on MI by minimizing Lk with

respect to θ leads to a compatibility function φθ∗ that obeys

eφθ∗ (x,y) ∝ p(x|y)

p(x)
=

p(x, y)

p(x)p(y)
, (5.4)

where θ∗ is the optimal θ obtained by minimizing Lk.

5.2.2 InfoNCE for Phrase Grounding

Recent work [135] has shown that pre-trained object detectors such as FasterRCNN [4]

and language models such as BERT [39] provide rich representations in the visual and textual
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domains for the phrase grounding problem. Inspired by this, we aim to maximize mutual

information between region features generated by an object detector and contextualized

word representation extracted by a language model.

Let us denote image region features for an image by R = {ri}mi=1 where m is the number of

regions in the image with each ri ∈ Rdr . Similarly, caption word representations are denoted

as W = {wj}nj=1 where n is the number of words in the caption with each word represented

as wj ∈ Rdw .

We maximize the InfoNCE lower bound on MI between image regions and each individual

word representation denoted by MI(R, wj). Thus using Eq. 5.2 we maximize the following

lower bound:

n∑
j=1

MI(R, wj) ≥ n log(k)−
n∑
j=1

Lkj(θ). (5.5)

We empirically show that maximizing the lower bound in Eq. 5.5 with an appropriate choice

of compatibility function φθ results in learning phrase grounding without strong grounding

supervision. The following section details the design of the compatibility function.

5.2.3 Compatibility Function with Attention

The InfoNCE loss in our phrase grounding formulation requires a compatibility function

between the set of region feature vectors R and the contextualized word representation wj.

To define the compatibility function, we propose a query-key-value attention mechanism.

Specifically, we define neural modules kr, vr : Rdr → Rd to map each image region to keys

and values and qw, vw : Rdw → Rd to compute query and values for the words. The query

vectors for each word are used to compute the attention score for every region given a word

using

a(ri, wj) =
es(ri,wj)∑m
i′=1 e

s(ri′ ,wj)
, (5.6)

where s(ri, wj) = qw(wj)
Tkr(ri)/

√
d. The attention scores are used as a soft selection

mechanism to compute a word-specific visual representation using a linear combination of

region values

vatt(R, wj) =
m∑
i=1

a(ri, wj)vr(ri). (5.7)

Finally, the compatibility function is defined as φθ(R, wj) = vTw(wj)vatt(R, wj), where θ

refers to the parameters of neural modules kr, vr, qw, and vw, implemented using simple feed-

forward MLPs. Following Eqs. 5.3 & 5.5, the InfoNCE loss for phrase grounding is defined
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Figure 5.2: Compatibility function φθ with word-region attention. The figure
shows compatibility computation between the set of image regions and the word “mug”
in the caption. The compatibility function consists of learnable query-key-value functions
kr, vr, qw, vw. The query constructed from contextualized representation of the word “mug”
is compared to keys created from region features to compute attention scores. The atten-
tion scores are used as weights to linearly combine values created from region features to
construct an attended visual representation for “mug”. The compatibility is defined by the
dot product of the attended visual representation and value representation for “mug”.

as

Limg(θ) = EB

[
−

n∑
j=1

log

(
eφθ(R,wj)

eφθ(R,wj) +
∑k−1

i=1 e
φθ(R

′
i,wj)

)]
. (5.8)

which is marked using subscript img as negative pairs are created by replacing image regions

from a positive pair with regions extracted from negative instance in the mini-batch.

Remark: We enforce compatibility between each word and all image regions using MI(R, wj)

in Eq. 5.5, but not between a region and all caption words (MI(ri,W)). This is because the

words only describe part of the image, so there will be regions with no corresponding word

in the caption.
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Caption Negatives Selected
After Reranking

Candidates Rejected 
After Reranking

A man is seated at a counter with all types of delicious looking foods, 
yet is completely unaffected, casually reading his newspaper.

menu, books, phone, scripts, 
email, messages, bible, tablet

newspaper, paper, journal, article, 
magazine

A BMX bike rider in red clothing and a helmet is riding his bike next 
to a wooden fence.

bench, pole, statue, door, table, 
chair, sign, platform, piano fence, gate, wall, railing, screen

A man in a blue jumpsuit stands next to a red van pulling a trailer. bike, sedan, horse, jeep, cart, car, 
tractor, bull, engine, motorcycle van, trailer, vehicle, light, truck

A man and a boy are playing with a dog in the evening. girl, lady, mother, woman, 
teenager, child, teacher, mom man, boy, guy, couple, youth

A woman in a brown sweater sits at a table covered with food. boy, guy, gentleman, kid, nurse, 
soldier, waiter, priest, child woman, female, person, face, lady

A man with shorts and a hat is holding onto a little boy and a dog. gloves, glasses, coat, trousers, 
bags, apron, moustache, beard shorts, ties, pants, stripes, jeans

Figure 5.3: Context-preserving negative captions. We construct negative captions
which share the same context as the true caption but substitute a noun word. We choose
the substitute using a language model such that it is plausible in the context but we reject
potential synonyms or hypernyms of the original word by a re-ranking procedure.

5.2.4 Context-Preserving Negative Captions

The objective in Eq. 5.8 trains the compatibility function by contrasting positive regions-

word pairs against pairs with replaced image regions. We now propose a complementary

objective function that contrasts the positive pairs against negative pairs whose captions

are replaced with plausible negative captions. However, extracting negative captions that

are related to a captions is challenging as it requires semantic understanding of words in a

caption. Here, we leverage BERT as a pretrained bidirectional language model to extract

such negative captions.

For a caption with a noun word s and context c, we define a context-preserving negative

caption as one which has the same context c but a different noun s′ with the following

properties: (i) s′ should be plausible in the context; and (ii) the new caption defined by

the pair (s′, c) should be untrue for the image. For example, consider the caption "A man

is walking on a beach" where s is chosen as "man" and c is defined by "A [MASK] is

walking on a beach" where [MASK] is the token that denotes a missing word. A potential

candidate for a context-preserving negative caption might be "A woman is walking on a

beach" where s′ is woman. However, "A car is walking on a beach" and "A person is

walking on a beach" are not negative captions because car is not plausible given the con-

text, and the statement with person is still true given that the original caption is true for

the image.

Constructing context-preserving negative captions. We propose to use a pre-trained
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BERT language model to construct context-preserving negative captions for a given true

caption. Our approach for extracting such words consists of two steps: First, we feed the

context c into the language model to extract 30 most likely candidates {s′l}30l=1 for the masked

word using probabilities p(s′|c) predicted by BERT. Intuitively, these words correspond to

those that fill in the masked word in caption according to BERT. However, the original

masked word or its synonyms may be present in the set as well. Thus, in the second step,

we pass the original caption into BERT to compute q(s′l|s, c) which we use as a proxy for

how true (s′l, c) is given that (s, c) is true. We re-rank the candidates using the score p(s′|c)
q(s′|s,c)

and we keep the top 25 captions {(s′l, c)}25l=1 as negatives for the original caption (s, c).

We empirically find that the proposed approach is effective in extracting context-preserving

negative captions. Fig. 5.3 shows a context-preserving negatives for a set of captions along

with candidates that were rejected after re-ranking. Note that the selected candidates match

the context and the rejected candidates are often synonyms or hypernyms of the true noun.

Training with context-preserving negative captions. Given the context-preserving

negative captions, we can train our compatibility function by contrasting the positive pairs

against negative pairs with plausible negative captions. We use a loss function similar to

InfoNCE to encourage higher compatibility score of an image with the true caption than any

negative caption. Let w and {w′l}25l=1 denote the contextualized representation of the positive

word s and the corresponding negative noun words {s′l}25l=1. The language loss is defined as

Llang(θ) = EB

[
− log

(
eφθ(R,w)

eφθ(R,w) +
∑25

l=1 e
φθ(R,w

′
l)

)]
. (5.9)

For captions with multiple noun words, we randomly select s from the noun words for

simplicity.

5.2.5 Implementation Details

Regions and Visual Features. We use the Faster-RCNN object detector provided by

Anderson et al . [16] and used for extracting visual features in the current state-of-the-art

phrase grounding approach Align2Ground [135]. The detector is trained jointly on Visual

Genome object and attribute annotations and yields ∼ 10 to 50 top scoring bounding boxes

per image with 2048 dimensional ROI-pooled region features.

Contextualized Word Representations. We use a pretrained BERT language model to
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extract 768 dimensional contextualized word representations for each caption word. Note

that BERT is trained on a text corpora using masked language model training where words

are randomly replaced by a [MASK] token in the input and the likelihood of the masked

word is maximized in the distribution over vocabulary words predicted at the output. Thus,

BERT is trained to model distribution over words given context and hence suitable for mod-

eling p(s|c) defined in Sec. 5.2.4 for constructing context-preserving negative captions.

Query-Key-Value Networks. We use an MLP with 1 hidden layer for each of kr, vr, qw, vw

for all experiments except the ablation in Fig. 5.4. We use BatchNorm [168] and ReLU ac-

tivations after the first linear layer. The hidden layer has the same number of neurons as

the input dimensions of these networks which are 2048 for (kr, vr), and 768 for (qw, vw). The

output layer is 384 (= 768/2) for all networks.

Losses. Since we only care about grounding noun phrases, we compute Limg only for noun

and adjective words in the captions as identified by a POS tagger instead of all caption

words for computation efficiency.

Optimization. We optimize the losses computed over batches consisting of 50 image-

caption pairs using the ADAM optimizer [110] with a learning rate of 10−5. We compute

Limg for each image using other images in the batch as negatives.

Attention to phrase grounding. We use the BERT tokenizer to convert captions into

individual word or sub-word tokens. Attention is computed per token. For evaluation, the

phrase-level attention score for each region is computed as the maximum attention score

assigned to the region by any of the tokens in the phrase. The regions are then ranked

according to this phrase level score.

5.3 EXPERIMENTS

Our experiments compare our approach to state-of-the-art on weakly supervised phrase

localization (Sec. 5.3.2), ablate gains due to pretrained language representations and context-

preserving negative sampling using a language model (Sec. 5.3.3), and analyse the relation

between phrase grounding performance and the InfoNCE bound that we optimize as a proxy

for phrase grounding (Sec. 5.3.4).
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Method Training Data Visual Features R@1 R@5 R@10 Accuracy

GroundeR (2015) [137] Flickr30K Entities VGG-det (VOC) 28.94 - - -
Yeh et al . (2018) [142] Flickr30K Entities VGG-cls (IN) 22.31 - - -
Yeh et al . (2018) [142] Flickr30K Entities VGG-det (VOC) 35.90 - - -
Yeh et al . (2018) [142] Flickr30K Entities YOLO (COCO) 36.93 - - -
KAC Net+Soft KBP (2018) [169] Flickr30K Entities VGG-det (VOC) 38.71 - - -

Fang et al . (2015) [140] COCO VGG-cls (IN) - - - 29.00
Akbari et al . (2019) [136] COCO VGG-cls (IN) - - - 61.66
Akbari et al . (2019) [136] COCO PNAS Net (IN) - - - 69.19
Align2Ground (2019) [135] COCO Faster-RCNN (VG) - - - 71.00

Ours Flickr30K Entities Faster-RCNN (VG) 47.88 76.63 82.91 74.94
Ours COCO Faster-RCNN (VG) 51.67 77.69 83.25 76.74

Table 5.1: Grounding performance on Flickr30K Entities test set. We make our
approach directly comparable to the current state-of-the-art, Align2Ground [135]. The per-
formance of older methods are reported for completeness but the use of different visual
features makes direct comparison difficult.

5.3.1 Datasets and Metrics

We train our models on image-caption pairs from COCO training set which consists of

∼ 83K training images. We use the validation set with ∼ 41K images for part of our anal-

ysis. Each image is accompanied with 5 captions. For evaluation, we use the Flickr30K

Entities validation set for model selection (early stopping) and test set for reporting final

performance. Both sets consist of 1K images with 5 captions each. We report two metrics:

Recall@k which is the fraction of phrases for which the ground truth bounding box has an

IOU ≥ 0.5 with any of the top-k predicted boxes.

Pointing accuracy which requires the model to predict a single point location per phrase

and the prediction is counted as correct if it falls within the ground truth bounding box

for the phrase. Unlike recall@k, pointing accuracy does not require identifying the extent

of the object. Since our model selects one of the detected regions in the image, we use use

center of the selected bounding box as the prediction for each phrase for computing pointing

accuracy.

5.3.2 Performance on Flickr30K Entities

Tab. 5.3.2 compares performance of our method to existing weakly supervised phrase

grounding approaches on the Flickr30K Entities test set. A few existing approaches train on
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Negative Captions Language Model R@1 R@5 R@10 Accuracy

None BERT (Random) 25.66 59.57 75.16 57.37
None BERT (Pretrained) 35.74 72.91 82.07 66.89

Random BERT (Pretrained) 36.32 72.42 81.81 66.92
Contextually plausible BERT (Pretrained) 48.05 76.78 82.97 74.91
Excluding near-synonyms & hypernyms BERT (Pretrained) 51.67 77.69 83.25 76.74

Table 5.2: Benefits of language modeling. The first two rows show the gains due to
pretrained language representations. The next three rows show gains from each step in our
proposed context-preserving negative caption construction.

Flickr30K Entities train set and report recall@1 while recent methods use COCO train set

and report pointing accuracy. Further, all approaches use different visual features making

direct comparison difficult. For a fair comparison to state-of-the-art, we use Faster-RCNN

trained on Visual Genome object and attribute annotations used in Align2Ground [135]

and report performance for models trained on either datasets on both recall and pointing

accuracy metrics.

Using the same training data and visual feature architecture, our model shows a 5.7%

absolute gain in pointing accuracy over Align2Ground. Learning using our contrastive for-

mulation is also quite sample efficient as can be seen by only a 2 to 3 points drop in per-

formance when the model is trained on the much smaller Flickr30K Entities train set which

has approximately one-third as many image-caption pairs as COCO.

5.3.3 Benefits of Language Modeling

Our approach benefits from language modeling in two ways: (i) using the pretrained

language model to extract contextualized word representations, and (ii) using the language

model to sample context-preserving negative captions. Tab. 5.3.3 evaluates along both of

these dimensions.

Gains from pretrained word representations. In Tab. 5.3.3, BERT (Random) refers

to the BERT architecture initialized with random weights and finetuned on COCO image-

caption data along with parameters of the attention mechanism. BERT (Pretrained) refers

to the off-the-shelf pretrained BERT model which is used as a contextualized word feature

extractor during contrastive learning without finetuning. We observe a ∼10% absolute gain

in both recall@1 and pointing accuracy by using pretrained word representations from BERT.
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Figure 5.4: Relation between InfoNCE lower bound and phrase grounding performance with
training iterations for 3 different choices of key-value modules in the compatibility function
φθ. Each epoch is ∼ 8K iterations. The scattered points visualize the measured quantities
during training. The dashed lines are created by applying moving average to highlight the
trend.

Gains from context-preserving negative caption sampling. Our context-preserving

negative sampling has two steps. The first step is drawing negative noun candidates given

the context provided by the true caption. The second step is re-ranking the candidates to

filter out likely synonyms or hypernyms that are also true for the image.

First, note that randomly sampling negative captions from training data for computing

Llang performs similarly to only training using Limg. Model trained with contextually plau-

sible negatives significantly outperforms random sampling by ≥8% gain in recall@1 and

pointing accuracy. Excluding near-synonyms and hypernyms yields another ∼3 points gain

in recall@1 and accuracy.

5.3.4 Is InfoNCE a good proxy for learning phrase grounding?

The fact that optimizing our InfoNCE objective results in learning phrase grounding is

intuitive but not trivial. Fig. 5.4 shows how maximizing the InfoNCE lower bound correlates

well with phrase grounding performance on a heldout dataset. We make several interesting

observations: (i) As training progresses (from left to right), InfoNCE lower bound (Eq. 5.5)

mostly keeps increasing on the validation set. This indicates that there is no overfitting

in terms of the InfoNCE bound. (ii) With the increase in InfoNCE lower bound, phrase

grounding performance first increases until peak performance and then starts decreasing.
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This shows that the InfoNCE bound is correlated with the grounding performance but

maximizing it fully does not necessarily yields at the best grounding. Similar observation has

been made in [155] for representation learning. (iii) The peak performance and the number

of iterations needed for the best performance depends on the choice of key-value-query

modules. One and two layer MLPs hit the peak faster and perform better than linear

functions.

5.3.5 Qualitative Results

Fig. 5.5 visualizes the word-region attention learned by our model. The qualitative results

demonstrate the following abilities: (i) localizing different objects mentioned in the same

caption with varying degrees of semantic relatedness, e.g., man and canine in row 1 vs. man

and woman in row 3; (ii) disambiguation between two instances of the same object category

using caption context. For example, boy and another in row 4 and bride and groom from

other men and women in row 3; (iii) localizing object parts such as toddler’s shirt in row

2 and instrument’s mouthpiece in row 5; (iv) handling occlusion, e.g., table covered with

toys in row 6; (v) handling uncommon words or categories like ponytail and mouthpiece

in row 5 and hose in row 7.

These results show that given rich visual and contextualized word representations, con-

trastive learning causes our attention mode to learn phrase grounding.

5.4 LIMITATIONS AND FUTURE WORKS

The empirical examination of our framework reveals the following limitations:

Pretrained representations. Like prior arts, our approach relies on pretrained object

detector and a language model to represent regions and caption-words. Ideally, we would

expect to learn from scratch or improve existing region and word representations directly

from image-caption data.

Need for fully-labeled validation set. In Fig. 5.4, we observe that an early stopping

based on the validation performance is required to choose the best model for phrase ground-

ing. While this is common practice for weakly supervised learning [170] and the Flickr30K

Entities validation set we use is 80× smaller than the COCO training set, this translates to

using full supervision for a small set of images.

57



A man and a canine both stand on 
a snowy plane looking out into 
the distance.

man:0.26,0.17,0.09 canine:0.33,0.25,0.06

A toddler in a yellow shirt
standing in front of a living 
complex next to a baby carriage.

toddler:0.59,0.20,0.06 shirt:0.63,0.17,0.08#boxes:34

#boxes:27

A man in a tuxedo and a woman in 
a bride's gown are leaving a 
church.

man:0.17,0.09,0.09 woman:0.19,0.15,0.08#boxes:50

One boy follows another at the 
park.

boy:0.25,0.18,0.18 another:0.12,0.10,0.08#boxes:37

A man with a ponytail wearing a 
blue collared shirt is playing 
an instrument's mouthpiece.

ponytail:0.29,0.19,0.10 mouthpiece:0.32,0.16,0.09#boxes:12

Two kids sitting at a table full 
of toys.

kids:0.22,0.17,0.16 table:0.33,0.15,0.10#boxes:34

A curly-haired little girl 
watering plants with a hose.

haired:0.27,0.17,0.16 hose:0.29,0.16,0.16#boxes:24

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5.5: Visualization of attention. We show all detected regions and top-3 attended
regions with attention scores for two words highlighted in each caption.

Bounds on MI. While log(K)−Limg in Eq. 5.8 is a valid lower bound on MI, our log(K)−
Llang in Eq. 5.9 is no longer a lower bound on MI as it oversamples negative words related

to a caption. A valid bound would involve random sampling of captions from the training
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data however our context-preserving negative captions lead to much better performance.

5.5 CONCLUSION

In this work, we offer a novel perspective on weakly supervised phrase grounding from

paired image-caption data which has traditionally been cast as a multiple instance learning

problem. We formulate the problem as that of estimating mutual information between image

regions and caption words. We demonstrate that maximizing a lower bound on mutual

information with respect to parameters of a region-word attention mechanism results in

learning to ground words in images. We also show that language models can be used to

generate context-preserving negative captions which greatly improve learning in comparison

to randomly sampling negatives from training data.
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CHAPTER 6: SEMANTIC SCENE GENERATION

6.1 INTRODUCTION

In the previous chapter we designed a representation space for image regions and words

which generalizes across multiple vision-language tasks. However, this model treats images

as a bag of non-interacting regions. On the other hand, it is often the interactions between

objects that makes an image or a natural language description of a scene or an event in-

teresting. The current chapter and the next focus on modeling such interactions in two

distinct applications: (i) Semantic Scene Generation (this chapter), and (ii) Human-Object

Interaction Detection (Chapter 4).

Consider the scene description: Fred is wearing a blue hat and talking to Wilma in the

living room. Wilma then sits down on a couch. Picturing the scene in our mind requires

the knowledge of plausible locations, appearances, actions, and interactions of characters

and objects being described, as well as an ability to understand and translate the natu-

ral language description into a plausible visual instantiation. In this work, we introduce

Semantic Scene Generation (SSG), the task of generating complex scene videos from rich

natural language descriptions which requires jointly modeling the layout and appearances

of entities mentioned in the description. SSG models are trained using a densely annotated

video dataset with scene descriptions and entity bounding boxes. During inference, the

models must generate videos for novel descriptions (unseen during training).

Modelling the layout and appearances of entities for descriptions like the one above poses

several challenges:

• Entity Recall - the video must contain the relevant characters (Fred, Wilma), objects

(blue hat, couch) and background (setting that resembles a living room)

• Layout Feasibility - characters and objects must be placed at plausible locations

and scales (Fred, Wilma and the couch should be placed on the ground plane, the hat

must lie on top of Fred’s head)

• Appearance Fidelity - entity appearance, which may be affected by identity, pose,

action, attributes and layout, should respect the scene description

• Interaction Consistency - appearance of characters and objects must be consistent

with each other given the described, sometimes implicit, interaction (Fred and Wilma

should face each other as do people when they talk to each other)
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• Language Understanding - the system must be able to understand and translate a

natural language description into a plausible visual instantiation.

Thus, one of the main considerations while designing a model for SSG is to come up with

contextualized representations of different entities in a given description and a video that

can address the above challenges.

Towards the goal of SSG, we introduce Flintstones, a densely annotated dataset based

on The Flintstones animated series, consisting of over 25000 videos, each 75 frames long.

Each clip has been annotated with a caption with entities and background word annotated

in each caption. Bounding box tracks and segmentation masks (using SLIC [171] and Grab-

Cut [172]) are annotated for each entity in the clip. A clean background is also obtained for

each clip through PatchMatch [173] hole filling.

Flintstones has several advantages over using a random sample of internet videos. First,

in a closed world setting such as a television series, the most frequent characters are present

in a wide variety of settings, which serves as a more manageable learning problem than a

sparse set obtained in an open world setting. Second, the flat textures in animations are

easier to model than real world videos. Third, in comparison to other animated series, The

Flintstones has a good balance between having fairly complex interactions between characters

and objects while not having overly complicated, cluttered scenes. For these reasons, we

believe that the Flintstones dataset is semantically rich, preserves all the challenges of

text to scene generation and is a good stepping stone towards real videos. Flintstones

consists of an 80-10-10 train-val-test split. The train and val sets are used for learning and

model selection respectively. Test captions serve as novel descriptions to generate videos

at test time. To quantitatively evaluate our model, we use two sets of metrics. The first

measures semantic fidelity of the generated video to the desired description using entity

noun, adjective, and verb recalls. The second measures composition consistency, i.e. the

consistency of the appearances, poses and layouts of entities with respect to other entities

in the video and the background.

6.2 SEMI-PARAMETRIC VIDEO SYNTHESIS APPROACH OVERVIEW

Currently, the dominant approaches to conditional generation of visual data from text

rely on directly learning distributions in a high dimensional pixel space. While these ap-

proaches have shown impressive results for aligned images of objects (faces, birds, flowers,

etc.), they are often inadequate for addressing the above challenges, due to the combina-

torial explosion of the image space arising from multiple characters and objects with sig-
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Fred wearing a 
red hat is walking 
in the living room

RetrieveCompose RetrieveComposeRetrieve

Pebbles is sitting 
at a table in a 

room watching 
the television

RetrieveCompose RetrieveCompose Compose RetrieveRetrieve

Fuse

Fuse

Figure 6.1: Given a novel description, Craft sequentially composes a scene layout and
retrieves entities from a video database to create complex scene videos.

nificant appearance variations arranged in a large number of possible layouts. In contrast,

our proposed Composition, Retrieval and Fusion Network (Craft) explicitly models the

spatio-temporal layout of characters and objects in the scene jointly with entity appear-

ances. Unlike pixel generation approaches, our appearance model is based on text to entity

segment retrieval from a video database. Spatio-temporal segments are extracted from the

retrieved videos and fused together to generate the final video. The layout composition and

entity retrieval work in a sequential manner which is determined by the language input.

Factorization of our model into composition and retrieval stages alleviates the need to di-

rectly model pixel spaces, results in an architecture that exploits location and appearance

contextual cues, and renders an interpretable output.

We use Flintstones to evaluate Craft and provide a detailed ablation analysis. Craft

outperforms baselines that generate pixels directly from captions as well as a whole video

retrieval approach (as opposed to modeling entities). It generalizes well to unseen captions as

well as unseen videos in the target database. Our quantitative and qualitative results show

that for simpler descriptions, Craft exploits location and appearance contextual cues and

outputs videos that have consistent layouts and appearances of described entities. However,

there is tremendous scope for improvement. Craft can fail catastrophically for complex

descriptions (containing large number of entities, specially infrequent ones). The adjective

and verb recalls are also fairly low. We believe SSG on Flintstones presents a challenging

problem for future research. (See Fig 6.6 for qualitative results).

6.3 RELATED WORK

Generative models. Following pioneering work on Variational Autoencoders [174] and

Generative Adversarial Networks [175], there has been tremendous interest in generative

modelling of visual data in a high dimensional pixel space. Early approaches focused on

unconditional generation [176, 177, 178, 179], whereas recent works have explored models
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Layout Composer

Fred is talking to Wilma in a kitchen.

Entity Retriever

Video
Database

Place retrieved retrieved entity in the partial video at the predicted location and scale

Iterate over all entities (in red) 
in order of appearance in the 

description

Location

Scale

Description and the index of the entity in the sentence

Partial Video

Text, position, and 
scene context aware 

K-NN retrieval

Partially 
constructed video 
(initialized with a 

blank video)

Background Retriever
Similar to entity retrieval but 

without position and 
scene context

Query Embedding Network Target Embedding Network

Figure 6.2: Overview of Composition, Retrieval and Fusion Network (Craft), consisting
of three parts: Layout Composer, Entity Retriever and Background Retriever. Craft begins
with an empty video and sequentially adds entities mentioned in the input description at
locations and scales predicted by the Layout Composer.

conditioned on simple textual inputs describing objects [180, 181, 182, 183, 184]. While

the visual quality of images generated by these models has been steadily improving [185,

186], success stories have been limited to generating images of aligned objects (e.g. faces,

birds, flowers), often training one model per object class. In contrast, our work deals with

generating complex scenes which requires modelling the layout and appearances of multiple

entities in the scene.

Of particular relevance is the work by Hong et al . [187] who first generate a coarse semantic

layout of bounding boxes, refine that to segmentation masks and then generate an image

using an image-to-image translation model [188, 189]. A limitation of this approach is that

it assumes a fixed number of object classes (80 in their experiments) and struggles with

the usual challenge of modeling high dimensional pixel spaces such as generating coherent

entities. Formulating appearance generation in terms of entity retrieval from a database

allows our model to scale to a large number of entity categories, guarantee intra-entity

coherence and allows us to focus on the semantic aspects of scene generation and inter-

entity consistency. The retrieval approach also lends itself to generating videos without

significant modification. There have been attempts at extending GANs for unconditional

[190, 191] as well as text conditional [192, 193] video generation, but quality of generated

videos is usually worse than that of GAN generated images unless used in very restrictive

settings. A relevant generative modelling approach is by Kwak et al . [194] who proposed

a model in which parts of the image are generated sequentially and combined using alpha

blending. However, this work does not condition on text and has not been demonstrated
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on complex scenes. Another relevant body of work is by Zitnick et al . [195, 196, 197] who

compose static images from descriptions with clipart images using a Conditional Random

Field formulation.

To control the structure of the output image, a growing body of literature conditions im-

age generation on a wide variety of inputs ranging from keypoints [198] and sketches [199]

to semantic segmentation maps [188]. In contrast to these approaches which condition on

provided location, our model generates a plausible scene layout and then conditions entity

retrieval on this layout.

Phrase Grounding and Caption-Image Retrieval. The entity retriever in Craft is

related to caption based image retrieval models. The caption-image embedding space is

typically learned by minimizing a ranking loss such as a triplet loss [200, 31, 200, 201, 30].

Phrase grounding [61] is another closely related task where the goal is to localize a region in

an image described by a phrase.

One of our contributions is enriching the semantics of embeddings learned through triplet

loss by simultaneously minimizing an auxiliary classification loss based on noun, adjective

and verb words associated with an entity in the text description. This is similar in principle

to [202] where auxiliary autoencoding losses were used in addition to a primary binary

prediction loss to learn robust visual semantic embeddings. Learning shared representations

across multiple related tasks is a key concept in multitask learning [40, 203].

6.4 METHOD

Figure 6.2 presents an overview of Composition, Retrieval and Fusion Network which

consists of three parts: Layout Composer, Entity Retriever, and Background Retriever. Each

is a neural network that is trained independently using ground truth supervision. During

inference, Craft begins with an empty video and adds entities in the scene sequentially

based on the order of appearance in the description. At each step, the Layout Composer

predicts a location and scale for an entity given the text and the video constructed so far.

Then, conditioned on the predicted location, text, and the partially constructed video, the

Entity Retriever produces a query embedding that is looked up against the embeddings

of entities in the target video database. The entity is cropped from the retrieved video

and placed at the predicted location and scale in the video being generated. Alternating

between the Layout Composer and Entity Retriever allows the model to condition the layout

of entities on the appearance and vice versa. Similar to Entity Retriever, the Background

Retriever produces a query embedding for the desired scene from text and retrieves the
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Caption
T Caption with length |T |
{Ei}ni=1 n entities in T in order of appearance
{ei}ni=1 entity noun positions in T
Video
F number of frames in a video
{(li, si)}ni=1 position of entities in the video
li entity bounding box at each frame ({(xif , yif , wif , hif )}Ff=1)

si entity pixel segmentation mask at each frame

Vi−1 partially constructed video with entities {Ej}i−1j=1

V (= Vn) full video containing all entities

{(V [m], T [m])}Mm=1 training data points, where M = number of data points

Figure 6.3: Notations.

closest background video from the target database. The retrieved spatio-temporal entity

segments and background are fused to generate the final video. We now present the notation

used in the rest of the paper, followed by architecture and training details for the three

components.

6.4.1 Layout Composer

The layout composer is responsible for generating a plausible layout of the scene consisting

of the locations and scales of each character and object mentioned in the scene description.

Jointly modeling the locations of all entities in a scene presents fundamentally unique chal-

lenges for spatial knowledge representation beyond existing language-guided localization

tasks. Predicting plausible locations and scales for objects not yet in an image requires a

significant amount of spatial knowledge about people and objects, in contrast to text based

object localization which relies heavily on appearance cues. This includes knowledge like –

a hat goes on top of a person’s head, a couch goes under the person sitting on it, a person

being talked to faces the person speaking instead of facing away, tables are short and wide

while standing people are tall and thin, etc.

Figure 6.4 presents a schematic for the layout composer. Given the varying number of

entities across videos, the layout composer is setup to run in a sequential manner over the

set of distinct entities mentioned in a given description. At each step, a text embedding

of the desired entity along with a partially constructed video (consisting of entities fused

into the video at previous steps) are input to the model which predicts distributions for the

location and scale of the desired entity.

The layout composer models P (li|Vi−1, T, ei; θloc, θsc), the conditional distribution of the

location and scale (width and height normalized by image size) of the ith entity given the
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Fred talks to Wilma in a kitchen

Entity Embeddings

Bi-LSTM

Fully Conv. Location MLP

CNN
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Figure 6.4: Layout Composer is run sequentially through the set of entities in the descrip-
tion, predicting the distributions for the location and scale of the desired entity.

text, entity noun position in tokenized text, and the partial video with previous entities. Let

Ci denote the conditioning information, (Vi−1, T, ei). We factorize the position distribution

into location and scale components as follows:

P (li|Ci; θloc, θsc) =

F∏
f=1

P floc(xif , yif |Ci; θ
f
loc) · P

f
sc(wif , hif |xif , yif , Ci; θfsc) (6.1)

θloc = {θfloc}Ff=1 and θsc = {θfsc}Ff=1 are learnable parameters. P f
loc is modelled using a

network that takes Ci as input and produces a distribution over all pixel locations for the f th

image frame. We model P f
sc using a Gaussian distribution whose mean µf and covariance Σf

are predicted by a network given (xi, yi, Ci). Parameters θloc and θsc are learned from ground
truth position annotations by minimizing the following maximum likelihood estimation loss:

M∑
m=1

n[m]∑
i=1

F∑
f=1

[
− log(P floc(x

[m]
if , y

[m]
if |C

[m]
i ; θfloc)) + 0.5 · log(det(Σ(xif , yif , Ci; θ

f
sc)))+

0.5 · (z[m]
if − µf (D

[m]
i ; θfsc))

TΣf
−1(z

[m]
if − µf (D

[m]
i ; θfsc)) + log(2π)

]
(6.2)

where zif = [wif ;hif ] & D
[m]
i = (x

[m]
i , y

[m]
i , C

[m]
i ). For simplicity, we manually set and freeze Σ

to an isometric diagonal covariance matrix with variance of 0.005.

Feature Computation Backbone. The location and scale predictors have an identical

feature computation backbone comprising of a CNN and a bidirectional LSTM. The CNN

encodes Vi−1 (8 sub-sampled frames concatenated along the channel dimension) as a set of
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convolutional feature maps which capture appearance and positions of previous entities in

the scene. The LSTM is used to encode the entity Ei for which the prediction is to be made

along with semantic context available in the caption. The caption is fed into the LSTM and

the hidden output at ethi word position is extracted as the entity text encoding. The text

encoding is replicated spatially and concatenated with convolutional features and 2-D grid

coordinates to create a representation for each location in the convolutional feature grid that

is aware of visual, spatial, temporal, and semantic context.

Location Predictor. P f
loc is modelled using a Multi Layer Perceptron (MLP) that produces

a score for each location. This map is bilinearly upsampled to the size of input video frames.

Then, a softmax layer over all pixels produces P f
loc(x, y|C; θfloc) for every pixel location (x, y)

in the f th video frame.

Scale Predictor. Features computed by the backbone at a particular (x, y) location are

selected and fed into the scale MLP that produces µf (xi, yi, Ci; θ
f
sc).

Feature sharing and multitask training. While it is possible to train a separate network

for each {P f
loc, µf}Ff=1, we present a pragmatic way of sharing features and computation for

different frames and also between the location and scale networks. To share features and

computation across frames, the location network produces F probability maps in a single

forward pass. This is equivalent to sharing all layers across all P f
loc nets except for the last

layer of the MLP that produces location scores. Similarly, all the µf nets are also combined

into a single network. We refer to the combined networks by Ploc and µ.

In addition, we also share features across the location and scale networks. First, we share

the feature computation backbone, the output from which is then passed into location and

scale specific layers. Second, we use a soft-attention mechanism to select likely positions for

feeding into the scale layers. This conditions the scale prediction on the plausible locations of

the entity. We combine the F spatial maps into a single attention map through max pooling.

This attention map is used to perform weighted average pooling on backbone features and

then fed into the scale MLP. Note that this is a differentiable greedy approximation to find

the most likely location (by taking argmax of spatial probability maps) and scale (directly

using output of µ, the mode for a gaussian distribution) in a single forward pass. To keep

training consistent with inference, we use the soft-attention mechanism instead of feeding

ground-truth locations into µ.
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Figure 6.5: Entity Retriever retrieves spatio-temporal patches from a target database that
match entity description as encoded by the query embedding network.

6.4.2 Entity Retriever

The task of the entity retriever is to find a spatio-temporal patch within a target database

that matches an entity in the description and is consistent with the video constructed thus

far – the video with all previous entities retrieved and placed in the locations predicted by

the layout network. We adopt an embedding based lookup approach for entity retrieval.

This presents several challenges beyond traditional image retrieval tasks. Not only does the

retrieved entity need to match the semantics of the description but it also needs to respect

the implicit relational constraints or context imposed by the appearance and locations of

other entities. E.g. for Fred is talking to Wilma, it is not sufficient to retrieve a Wilma, but

one who is also facing in the right direction, i.e. towards Fred.

The Entity Retriever is shown in Figure 6.5 and consists of two parts: (i) query embedding

network Q, and (ii) target embedding network R. Q and R are learned using the query-target

pairs
〈
(T [m], e

[m]
i , l

[m]
i , V

[m]
i−1 ), (V [m], l

[m]
i , s

[m]
i )〉i,m in the training data. For clarity, we abbreviate

Q(T [m], e
[m]
i , l

[m]
i , V

[m]
i−1 ) as q

[m]
i and R(V [m], l

[m]
i , s

[m]
i ) as r

[m]
i . At each training iteration, we sample

a mini-batch of B pairs without replacement and compute embeddings {(q[mb]
ib

, r
[mb]
ib

)}Bb=1 where

q and r are each sequence of F embeddings corresponding to F video frames. The model is

trained using a triplet loss computed on all possible triplets in the mini-batch. Let δb denote

the set of all indices from 1 to B except b. The loss can then be defined as

Ltriplet =
1

B · (B − 1)

B∑
b=1

∑
b−∈δb

[
max(0, γ + q

[mb]
ib
� r[mb− ]

ib−
− q[mb]

ib
� r[mb]

ib
) +

max(0, γ + q
[mb− ]
ib−

� r[mb]
ib
− q[mb]

ib
� r[mb]

ib
)
]

(6.3)
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where q � r = 1
F

∑F
f=1 q[f ] · r[f ] is the average dot product between corresponding query

and target frame embeddings. We use a margin of γ = 0.1.

Auxiliary Multi-label Classification Loss We found models trained using triplet loss

alone could simply learn a one-to-one mapping between ground truth text and entity video

segments with poor generalization to unseen captions and database videos. To guide the

learning to utilize the compositional nature of text and improve generalization, we add an

auxiliary classification loss on the embeddings. The idea is to enrich the semantics of the

embedding vectors by predicting the noun, adjectives, and action words directly associated

with the entity in the description. For example, in the sentence Fred is talking to a happy

Wilma who is sitting on a chair, Wilma’s embedding produced by the query and target

embedding networks are forced to predict Wilma, happy and sitting ensuring their repre-

sentation in the embeddings. A vocabulary W is constructed of all nouns, adjectives and

verbs in the training data. Then for each sample in the mini-batch, an MLP is used as

a multi-label classifier to predict associated words from the query and target embeddings.

Note that a single MLP is used to make these noun, adjective and verb predictions on both

query and target embeddings.

Query Embedding Network (Q). Similar to the layout composer’s feature computation

backbone, Q consists of a CNN to independently encode every frame of Vi−1 and an LSTM

to encode (T, ei) which are concatenated together along with a 2-D coordinate grid to get

per-frame feature maps. However, unlike layout composer, the query embedding network

also needs to be conditioned on the position li where entity Ei is to be inserted in Vi−1. To

get location and scale specific query embeddings, we use a simplified RoIAlign (RoIPool with

RoI quantization and bilinear interpolation) mechanism to crop out the per-frame feature

maps using the corresponding bounding box lfi and scaling it to a 7× 7 receptive field. The

RoIAlign features are then averaged along the spatial dimensions to get the vector repre-

sentations for each time step independently. An LSTM applied over the sequence of these

embeddings is used to capture temporal context. The hidden output of the LSTM at each

time step is normalized and used as the frame query embedding q[f ].

Target Embedding Network (R). Since during inference, R needs to embed entities

in the target database which do not have text annotations, it does not use T as an input.

Thus, R is similar to Q but without the LSTM to encode the text. In our experiments

we found that using 2-D coordinate features in both query and target networks made the

network susceptible to ignoring all other features since it provides an easy signal for matching
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ground truth query-target pairs during training. This in turn leads to poor generalization.

Thus, R has no 2-D coordinate features.

6.4.3 Background Retriever

The task of the background retriever is to find a background scene that matches the setting

described in the description. To construct a database of backgrounds without characters in

them, we remove characters from videos (given bounding boxes) and perform hole filling using

PatchMatch [173]. The background retriever model is similar to the entity retriever with

two main differences. First, since the whole background scene is retrieved instead of entity

segments, the conditioning on position is removed from both query and database embedding

networks replacing RoI pooling with global average pooling. Second, while ideally we would

like scene and entity retrieval to be conditioned on each other, for simplicity we leave this

to future work and currently treat them independently. These modifications essentially

reduce the query embedding network to a text Bi-LSTM whose output at the background

word location in the description is used as the query embedding, and the target embedding

network to a video Bi-LSTM without RoI pooling. The model is trained using just the

triplet loss.

6.5 EXPERIMENTS

6.5.1 Layout Composer Evaluation

Metrics. We evaluate layout composer using 2 metrics: (a) negative log-likelihood (NLL)

of ground truth (GT) entity positions under the predicted distribution, and (b) average nor-

malized pixel distance (coordinates normalized by image height and width) of the ground

truth from the most likely predicted entity location. While NLL captures both location

and scale, pixel distance only measures location accuracy. We report metrics on unseen test

descriptions using ground truth locations and appearances for previous entities in the partial

video.

Feature Ablation. The ablation study in Table 6.1 shows that the layout composer benefits

from each of the 3 input features – text, scene context (partial video), and 2D coordinate

grid. The significant drop in NLL without text features indicates the importance of entity

identity, especially in predicting scale. The lack of spatial awareness in convolutional feature

maps without the 2D coordinate grid causes pixel distance to approximately double. The
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Text Scene Context 2D Coord. Grid Dil. Conv NLL Pixel Dist.

Uniform Distribution >9.704 >0.382
7 3 3 3 9.845 0.180
3 7 3 3 8.167 0.185
3 3 7 3 8.250 0.287
3 3 3 7 7.780 0.156
3 3 3 3 7.636 0.148

Table 6.1: Layout Composer Analysis. Evaluation of our model (last row) and ablations
on test set. First row provides theoretically computed values assuming a uniform location
distribution while making no assumptions about the scale distribution.

performance drop on removing scene context is indicative of the relevance of knowing what

entities are where in the scene in predicting the location of next entity. Finally, replacing

vanilla convolutions by dilated convolutions improves performance by increasing the spatial

receptive field without increasing the number of parameters. This corroborates the usefulness

of scene context in layout prediction.

6.5.2 Entity Retriever Evaluation.

Metrics. To evaluate semantic fidelity of retrieved entities to the query caption, we measure

noun, adjective, and verb recalls (@1 and @10) averaged across entities in the test set. The

captions are automatically parsed to identify nouns, adjectives and verbs associated with

each entity both in the query captions and target database (using GT database captions for

evaluation only). Note that captions often contain limited adjective and verb information.

For example, a red hat in the video may only be referred to as a hat in the caption, and Fred

standing and talking may be described as Fred is talking. We also do not take synonyms

(talking-speaking) and hypernyms (person-woman) into account. Thus the proposed metric

underestimates performance of the entity retriever.

Feature Ablation. Table 6.2 shows that text and location features are critical to noun,

adjective and verb recall. Scene context only marginally affects noun recall but causes sig-

nificant drop in adjective and verb recalls.

Effect of Auxiliary Loss. Table 6.3 shows that triplet loss alone does significantly worse

than in combination with auxiliary classification loss. Adding the auxiliary classification loss

on either query or target embeddings improves over triplet only but is worse than using all

three. Interestingly, using both auxiliary losses outperforms triplet loss with a single auxil-

iary loss (and triplet only) on adjective and verb recall. This strongly suggests the benefits
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Query Features Recall@1 Recall@10

Text Context Location Noun Adj. Verb Noun Adj. Verb
7 3 3 24.88 3.04 9.48 55.22 19.39 37.18
3 7 3 60.54 9.5 11.2 77.71 39.92 43.58
3 3 7 56.14 8.56 11.34 73.03 39.35 41.48
3 3 3 61.19 12.36 14.77 75.98 47.72 46.86

Table 6.2: Entity retriever feature ablation. Top-1 and top-10 recalls of our model (last
row) and ablations while generating videos for unseen test captions.

of multi-task training in entity retrieval.

Generalization to unseen videos. A key advantage of the embedding based text to entity

video retrieval approach over text only methods is that the embedding approach can use any

unseen video databases without any text annotations, potentially in entirely new domains

(eg. learning from synthetic video caption datasets and applying the knowledge to generate

real videos). However, this requires a model that generalizes well to unseen captions as well

as unseen videos. In Table 6.4 we compare entity recall when using the train set (seen)

videos as the target database vs using the test set (unseen) video as the target database.

Auxiliary Loss Recall@1 Recall@10

Triplet Query Target Noun Adj. Verb Noun Adj. Verb
7 3 3 35.75 7.79 8.83 63.62 43.35 33.12
3 7 3 51.68 3.8 8.66 67.86 25.28 39.46
3 3 7 50.54 4.94 9.94 66.36 28.52 39.5
3 7 7 48.59 3.04 9.34 65.64 20.15 37.95
3 3 3 61.19 12.36 14.77 75.98 47.72 46.86

Table 6.3: Entity retriever loss ablation. Top-1 and top-10 recalls of our model (last
row) and ablations while generating videos for unseen test captions.

Video Database
Recall@1 Recall@10

Noun Adj. Verb Noun Adj. Verb
Seen (Train) 61.19 12.36 14.77 75.98 47.72 46.86

Unseen (Test) 50.52 11.98 10.4 69.1 41.25 42.57

Table 6.4: Generalization to Unseen Database Videos. Retrieval results for Craft
when queried against seen videos vs unseen videos.

Modelling Whole Video vs Entities. A key motivation to composing a scene from

entities is the combinatorial nature of complex scenes. To illustrate this point we compare

Craft to a text-to-text based whole video retrieval baseline. For a given test caption, we
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Composition Consistency Visual Quality

Position Rel. Size Interact. FG BG Sharpness
Pixel Generation L1 0.69 0.65 0.55 0.96 1.44 1.07
Ours (GT Position) 1.69 1.69 1.34 1.49 1.65 2.16

Ours 1.78 1.86 1.46 1.98 1.95 1.82

Table 6.5: Human evaluation to estimate consistency and quality of generated videos.

return a video in the database whose caption has the highest BLEU-1 score. This approach

performs much worse than our model except on verb recall (BLEU: 49.57, 5.18, 26.64; Ours:

62.3, 21.7, 16.0). This indicates that novel captions often do not find a match in the target

database with all entities and their attributes present in the same video. However, it is more

likely that each entity and attribute combination appears in some video in the database.

Note that text-to-text matching also prevents extension to unseen video databases without

text annotations.

6.5.3 Human Evaluation

Metrics. In addition to the automated recall metrics which capture semantic fidelity of the

generated videos to the captions, we run a human evaluation study to estimate the com-

positional consistency of entities in the scene (given the description) and the overall visual

quality (independent of the description). The consistency metric requires humans to rate

each entity in the video on a 0-4 scale on three aspects: (a) position in the scene, (b) size

relative to other entities or the background, and (c) appearance and consistency of described

interactions with other entities in the scene. The visual quality metric measures the aes-

thetic and realism of the generated scenes on a 0-4 scale along three axes: (a) foreground

quality, (b) background quality, and (c) sharpness. See supplementary material for the design

of these experiments.

Generating Pixels (Parametric) vs Retrieval (Semi-Parametric). We experimented

extensively with text conditioned whole video generation using models with and without

adversarial losses and obtained poor results. Since generative models tend to work better

on images with single entities, we swapped out the target embedding network in the entity

retriever by a generator. Given the query embedding at each of the F time steps, the gen-

erator produces an appearance image and a segmentation mask. The model is trained using

an L1 loss between the masked appearance image and the masked ground truth image, and

an L1 loss between the generated and ground truth masks. See supplementary material

for more details. This baseline produced blurry results with recognizable colors and shapes
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for most common characters like Fred, Wilma, Barney, and Betty at best. We also tried

GAN and VAE based approaches and got only slightly less blur. Table 6.5 shows that this

model performs poorly on the Visual Quality metric compared to Craft. Moreover, since

the visual quality of the generated previous entities affects the performance of the layout

composer, this also translates into poor ratings on the composition consistency metric. Since

the semantic fidelity metrics can not be computed for this pixel generation approach, we ran

a human evaluation to compare this model to ours. Humans were asked to mark nouns,

adjectives and verbs in the sentence missing in the generated video. Craft significantly

outperformed the pixel generation approach on noun, adjective, and verb recall (Craft :

61.0, 54.5, 67.8, L1: 37.8, 45.9, 48.1).

Joint vs Independent Modelling of Layout. We compare Craft to a model that uses

the same entity retriever but with ground truth (GT) positions. Using GT positions per-

formed worse than Craft (GT: 62.2, 18.1, 12.4; Full: 62.3, 21.7, 16.0 Recall@1). This is also

reflected in the composition consistency metric (GT: 1.69, 1.69, 1.34; Full: 1.78, 1.89, 1.46).

This emphasizes the need to model layout composition and entity retrieval jointly. When

using GT layouts, the retrieval gets conditioned on the layout but not vice versa.

6.6 CONCLUSION

In this chapter we showed how to model interactions between entities described in a

scene to predict a feasible layout and appearances of entities. Our proposed approach is a

semi-parametric alternative to fully parametric GAN and VAE based generative approaches

commonly used in the literature. We perform a thorough ablation study to illustrate the

ability of our model to understand natural language scene description, use context (in the

form of position and appearance of other entities in the scene), model appearance and

layout jointly, and generalize to both unseen query captions and target video databases.

Our contributions from a representation perspective include contextual representations of

different entities in a given sentence and video, and an auxiliary multi-label classification

loss that encourages compositional representations.
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Wilma and Betty are 
seated at a table in 
the kitchen.

Fred wearing a 
helmet is walking in 
the living room.

Pebbles is sitting in 
a car outside.

Betty is speaking on 
the telephone in the 
kitchen.

Betty is sitting at a 
dining table hearing 
the radio.

Fred and Betty are 
seated at a table in 
the dining room.

A man wearing a 
blue shirt is talking 
in the living room.

Betty and Wilma
have a conversation 
in the living room. 
They take take turns 
conversing with 
each other while 
they are seated on 
the couch.

A guy with bow tie 
is on the tv in the 
living room. He is 
talking on the tv.

Wilma is talking to 
Fred while he is 
sitting in the dining 
room at the table
reading a book.  
Fred just reads his 
book and ignores 
Wilma.

Wilma is speaking 
to fred while he is 
laying down in the 
bedroom . fred has 
a heavily piled plate 
of food with him.

Barney and Fred are 
outside at a camp, 
and they are 
wearing uniforms 
that include 
identical green hats, 
red scarves and 
white belts. …

Figure 6.6: Qualitative results for Craft. Last row shows failures of the layout com-
poser (left) and the entire system (right). See https://youtu.be/688Vv86n0z8 for video
examples, failure cases, and visualization of predicted location and scale distributions
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CHAPTER 7: HUMAN-OBJECT INTERACTION DETECTION:
FACTORIZATION, LAYOUT ENCODINGS, AND TRAINING

TECHNIQUES

7.1 INTRODUCTION

Continuing with the idea of modeling interactions between entities in an image, in this

chapter, we focus on the task of human-object interaction (HOI) detection. Given an image,

the task is to localize and recognize a predetermined set of human-object interactions. For

instance, detecting the HOI “human-row-boat” refers to localizing a “human”, a “boat”,

and predict the interaction “row” for this human-object pair. Note that an image may

contain multiple people rowing boats (or even the same boat), and the same person could

simultaneously be interacting with the same or a different object in different ways. For

example, a person can simultaneously “sit on” and “row” a boat while “wearing” a backpack.

Recently, increasingly sophisticated techniques have been proposed for encoding position

and appearance for HOI detection. For instance, Chao et al . [204] encode the configuration

of human-object box pairs using a CNN operating on a two channel binary image called the

interaction pattern. Gkioxari et al . [205] predict a distribution over target object locations

based on human appearance using a mixture density network [206]. For encoding appearance,

approaches range from multitask training of a human-centric branch [205] alongside object

classification, to using an attention mechanism which gathers contextual information from

the image [207].

In this work, we propose a no-frills model for HOI detection. In contrast to sophisticated

end-to-end models, we use appearance features from pretrained object detectors, and en-

code layout using hand-crafted bounding-box coordinate features (optionally human pose

keypoints). Our network architecture is also modest, comprising of light-weight multi-layer

perceptrons (MLPs) that operate on these appearance and layout features. In spite of these

simplifications, our model achieves state-of-the-art performance on the challenging HICO-

Det dataset.

Our gains are due to the choice of factorization, direct encoding and scoring of layout,

and improved training techniques. Our model consists of human/object detection terms and

an interaction term. The interaction term further consists of human and object appearance,

box-configuration, and pose or fine-layout factors. We perform a thorough ablation study

to evaluate the effect of each factor.

In contrast to existing work, which needs to train a CNN [204] or a mixture density

network [205] to encode layout, we use hand-crafted absolute and relative position features
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Figure 7.1: Fixing training-inference mismatch and rejecting easy negatives. The
figure illustrates training and inference on a single HOI class (“human-ride-horse”) for sim-
plicity. As shown in (a), existing models [205, 207] often train human/object and interaction
branches using object and interaction classification losses respectively. The scores produced
by these branches are combined during inference to produce HOI scores. Hence, training
does not reflect the inference objective. Our model, shown in (b), fixes this mismatch by
optimizing the combined scores using a multi-label HOI classification loss. Our model also
rejects easy negative box-pairs (or keeps only “human-horse” box pairs) during training
and inference using the sets of detections selected for human and object categories (Bhuman,
Bhorse). While existing approaches also select detection candidates, the models are typically
trained using minibatches containing candidates for different HOI/object categories.

computed from bounding boxes or human pose keypoints. Our choice is motivated by the

observation illustrated in Fig. 7.1: pretrained object and pose detectors provide strong

geometric cues for interaction prediction.

We also develop the following training techniques for improving learning efficiency of our

factored model:

(1) Eliminating train-inference mismatch. [205, 207] learn detection and interaction

terms via separate detection and interaction losses. During inference, the scores of all fac-

tors are simply multiplied to get final HOI class probabilities. Instead, we directly optimizing

the HOI class probabilities using a multi-label HOI classification loss (Fig. 7.1) (Interaction

Loss: 15.89 mAP vs . HOI Loss: 16.96 mAP).

(2) Rejecting easy negatives using indicator terms. Rejecting easy negatives is ben-

eficial not only during test but also during training because it allows the model to focus
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on learning to score hard negatives. We generate a candidate box-pair (b1, b2) using a pre-

trained object detector which is then scored by the factor model. If either b1 is not a

“human” candidate (category h) or b2 is not an object candidate o, then the factor model

should predict a 0 probability of (b1, b2) belonging to HOI category (h, o, i) for any interac-

tions i. This is achieved by including indicator terms in our object detection factors and

can be implemented efficiently by applying a mask on predicted probabilities constructed

from labels predicted by the object detector (Fig. 7.1) (w/o indicators: 15.93 mAP vs . w

indicators: 16.96 mAP).

(3) Training with large negative to positive ratio. We construct training mini-batches

by sampling a two orders of magnitude larger number of negative box-pairs per positive pair

than related work (1000 vs . < 10). Higher ratios compared to object detector training are

expected since the number of negative pairs is quadratic in the number of object proposals

as opposed to being linear for object detectors (neg. to pos. ratio 10: 13.40 mAP vs . 1000:

16.96 mAP).

In summary, our key contributions are: (1) a simple but competitive model for HOI

detection that takes advantage of appearance and layout encodings from a pre-trained object

detector (and optionally a pose detector); (2) a comparison of coarse and fine-grained layout

encodings; and (3) techniques for enhancing learning efficiency of our model.

7.2 RELATED WORK

Assessing interactions between humans and objects in images is a challenging problem

which has received a considerable amount of attention from the machine learning, computer

vision and robotics community in the last decade [208, 209, 210, 211, 212, 213].

Human activity recognition is among the early efforts to analyze human actions in im-

ages or videos. Benchmarks such as UCF101 [214] and THUMOS [215] focused on classifying

a video sequence into one of 101 action categories. While UCF101 only dealt with carefully

trimmed videos, an artificial setting, the THUMOS challenge additionally introduced the

task of temporal localization of activities in untrimmed videos. Image action recognition

benchmarks such as Stanford 40 Actions [216] and PASCAL VOC 2010 [213] have also been

used in the literature. While similar in intent, these action recognition challenges differ from

human-object interaction detection in three ways – (1) the tasks are limited to images or

videos containing a single human-centric action, such as bowling, diving, fencing, etc.; (2)
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the action classes are disjoint and often involve interaction with an object unique to the

activity (allowing models to cheat by simply recognizing the object); and (3) spatial local-

ization of neither the person nor the object being interacted with is required.

Moving from actions to interactions, Chao et al . [217, 204] introduce the HICO and

HICO-DET datasets to address the above limitations. The HICO dataset consists of a large

collection of images annotated with 600 human-object interactions with a diverse set of 117

interactions with 80 COCO [218] object categories. Unlike previous tasks, HOI classification

is multi-label in nature since each image may contain multiple humans interacting with

same or different objects. Recently, Chao et al . extended the HICO dataset with exhaustive

bounding box annotations for each of the HOI classes to create HICO-DET. Due to the

human-centric nature of the annotation task and predefined set of objects and interactions,

HICO-DET does not suffer from the missing annotation problem (at least to the same

extent) that plagues datasets such as Visual Genome [219] and VRD [220] that are used for

the general visual relationship (object-object interaction) detection task.

In a similar effort, Gupta et al . [221] augment the COCO dataset [218] by annotating

people (agents) with one of 26 action labels along with location and labels of objects fulfilling

various semantic roles for the action. In another visual equivalent of the semantic role

labelling (SRL) task studied in NLP, Yatskar et al . [222] create an image dataset for situation

recognition, which is defined to subsume recognition of activity, participating objects and

their roles.

In this work, we choose HICO-DET as a test bed for experimentation due to its large,

diverse, and exhaustively annotated set of human-object interactions which allows for an

accurate and meaningful evaluation. The task is also a natural extension of classical object

detection to detection of human-object pairs with interaction labels. In contrast, the visual-

SRL task is further complicated by varying number of semantic roles for each action.

Existing models for HOI detection. In [204] Chao et al . propose HO-RCNN, a 3-

stream architecture with one stream each for a human candidate, an object candidate, and a

geometric encoding of the pair of boxes using the proposed interaction pattern. Each stream

produces scores for every possible object-interaction category (600 for HICO-DET). The 3

set of scores are combined using late-fusion to make the final prediction. Note that this

approach treats “ride bicycle” and “ride horse” as independent visual entities and does not

use the knowledge of “ride” being a common component. In contrast, our approach exploits

this compositionality to learn shared visual appearance and geometric representations (e.g .,

“ride” typically involves a human box above an object box). In other words, weight sharing
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between different HOI classes in our factored model makes it more data efficient than [204]

which predicts scores for 600 HOI categories using independent weights in the last 600-way

fully connected layer in each of the 3 streams.

Gkioxari et al . [205] take a multitask learning [40] perspective on this problem. The idea is

to augment the Faster-RCNN [223] object detection framework with a human-centric branch

and an interaction branch that are trained jointly alongside the original object recognition

branch. To incorporate geometric cues, a Mixture Density Network (MDN) [206] is used to

produce parameters of the object location distribution given the location of the human box.

This distribution is used to score candidate objects for a given human box. The model is

trained using object classification loss for the object branch, interaction classification losses

for the human centric action classification branch and the optional interaction branch, and

a smooth L1 loss between the ground truth box-pair encoding and mean predicted by the

localization MDN. During inference, predictions from these branches are fused heuristically.

In contrast, we optimize the final HOI score obtained after fusing the individual factor

scores. We also more directly encode box-pair layout using absolute and relative bounding

box features which are then scored using a dedicated factor.

7.3 METHOD

In the following, we first present an overview of the proposed factor model, followed by

details of the potentials which encode appearance, box configuration, and optionally human

pose. Finally, we discuss our strategy for learning these factors from annotated box pairs.

7.3.1 Overview

Given an image x and a set of object-interaction categories of interest, human-object

interaction (HOI) detection is the task of localizing all human-object pairs participating in

one of the said interactions. The combinatorial search over human and object bounding-box

locations and scales, as well as object labels, O, and interaction labels, I, makes both learning

and inference challenging. To deal with this complexity, we decompose inference into two

stages. In the first stage, object category specific bounding box candidates Bo ∀o ∈ O are

selected using a pre-trained object detector such as Faster-RCNN. For each HOI category,

i.e., for each triplet (h, o, i) ∈ H, a set of candidate human-object box pairs is constructed by

pairing every human box candidate bh ∈ Bh with every object box candidate bo ∈ Bo of the

corresponding object class o ∈ O. In the second stage, an HOI category specific factored

model is used to score and rank candidate box pairs (bh, bo) ∈ Bh×Bo for each HOI category.
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Algorithm 7.1: Inference on a single image
Input : Image x,

Set of object (O), interaction (I), and HOI (H ⊆ {human} × O × I) classes of interest,
Pretrained Faster-RCNN object detector and OpenPose human keypoints detector

// Stage 1: Create a set of box candidates for each object (including human)

1 Run Faster-RCNN on x to get ∀ o ∈ O, 300 region proposals (Ro) with ROI appearance features and
detection probabilities for class o

2 foreach o ∈ O do
3 Construct Bo = {b ∈ Ro| b survives NMS (threshold 0.3) and Pdet(ldet = o|b, x) > 0.01}
4 Update Bo to keep at most 10 highest ranking detections.

5 end
6 Run OpenPose on x to get skeletal-keypoints k(b) ∀ b ∈ Bh (set of human boxes)
// Stage 2: Score candidate pairs using the proposed factored model

7 foreach (h, o, i) ∈ H do
8 foreach bh ∈ Bh do
9 foreach bo ∈ Bo do

10 Compute box configuration features for (bh, bo)
11 Compute fine grained pose features for (k(bh), bh, bo)
12 Compute P (y(h,o,i) = 1|b1, b2, x) using equations 7.1, 7.2, and 7.3

13 end

14 end
Output: Ranked list of (bh, bo) ∈ Bh ×Bo as detections with probabilities for class (h, o, i)

15 end
// Steps 7-15 are implemented with a single forward pass on a mini-batch of

precomputed features

Our factor graph consists of human and object appearance, box pair configuration and human

pose potentials that encode visual and spatial knowledge useful for understanding human-

object interactions. The model is parameterized to share representations and computation

across different object and interaction categories to efficiently score candidate box pairs for

all HOI categories of interest in a single forward pass. See Alg. 7.1 for a detailed description

of the inference procedure.

7.3.2 Factored Model

For an image x, given a human-object candidate box pair (b1, b2), human pose keypoints

k(b1) detected inside b1 (if any), and the set of box candidates for each object category, the

factored model computes the probability of occurrence of human-object interaction (h, o, i)

in (b1, b2) as follows:

P (y(h,o,i) = 1|b1, b2, x, o, k(b1), Bh, Bo)

= P (yh = 1, yo = 1, yi = 1|b1, b2, x, o, k(b1), Bh, Bo)

= P (yh = 1|b1, x, Bh) · P (yo = 1|b2, x, Bo) · P (yi = 1|b1, b2, k(b1), o, x)

(7.1)
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Here, yh ∈ {0, 1} is a random variable denoting if b1 is labeled as a human, yo ∈ {0, 1} denotes

if b2 is labeled as object category o, and yi ∈ {0, 1} denotes if the interaction assigned to the

box-pair is i. The above factorization assumes that human and object class labels depend

on the individual boxes and the image, while the interaction label depends on the box-pair,

pose, object label under consideration, and the image. For brevity, we will refer to the left

hand side of the above equation as P (y(h,o,i) = 1|b1, b2, x). We now describe how the 3 terms

are modelled.

7.3.2.1 Detector Terms

The first two terms in Eq. 7.1 are modelled using the set of candidate bounding boxes for

each object class and classification probabilities produced by a pretrained object detector.

For any object category c (including h), the detector term can be computed as

P (yc = 1|b, x, Bc) = 1(b ∈ Bc) · Pdet(ldet = c|b, x), (7.2)

where the Pdet term corresponds to the probability of assigning object class c to region b

in image x by the object detector. The indicator term checks if the region belongs to the

set of candidate bounding boxes for c selected from the set of all region proposals using

non-maximum suppression and thresholding on class probabilities.

7.3.2.2 Interaction Term

Interaction term refers to the probability of entities in b1 and b2 engaging in interaction

i ∈ I. Note that the interaction term is conditioned on the object label o. This allows the

model to learn that only certain interactions are feasible for a given object. For example, it is

possible to “clean” or “eat at” a “dinning table” but not to “drive” or “greet” it. In practice,

we found conditioning on o did not affect results significantly. To capture visual and spatial

knowledge required for predicting interactions given human box, object box, human pose

and the object label, the interaction term Pint(yi = 1|b1, b2, k(b1), o, x) is written as

σ (φhuman(i|b1, x) + φobject(i|b2, x) + φboxes(i|b1, b2, o) + φpose(i|b1, b2, k(b1), o)) , (7.3)

where σ is the Sigmoid function and each of the feature functions φ is a learnable deep net

factor. The information captured by each factor along with input data and network archi-

tecture are as follows:
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Appearance. Factors φhuman and φobject predict the interaction that the human and the

object are engaged in, based on visual appearance alone. The appearance of a box in an

image is encoded using Faster-RCNN [223] fc7 features extracted from the RoI. By de-

sign, this representation captures context in addition to content within the box. The 2048

dimensional fc7 features are fed into a multi-layer perceptron (MLP) with a single 2048

dimensional hidden layer with Batch Normalization [168] and ReLU [224]. The output layer

has 117 neurons, one per interaction category in I.

Box Configuration. Object label and the absolute and relative positions and scales of the

human and object boxes are often indicative of the interaction, without even knowing the

appearance (e.g ., a human box above and overlapping with a ‘horse’ box strongly suggests a

‘riding’ interaction). φboxes encodes this intuition by predicting a score for each interaction

given an encoding of the bounding boxes and the object label. The object label is encoded

as a |O| (= 80) dimensional one hot vector. The bounding boxes are represented using a 21

dimensional feature vector. We encode the absolute position and scale of both the human

and object boxes using box width, height, center position, aspect ratio, and area. We also

encode relative configuration of the human and object boxes using relative position of their

centers, ratio of box areas and their intersection over union. These 21 dimensional features

are concatenated with their log absolute values and the object label encoding and passed

through an MLP with 2 hidden layers, 122 (= 2 × 21 + 80) dimensional each (same as the

input feature dimension), with Batch Normalization and ReLU.

Human Pose. We supplement the coarse layout encoded by bounding boxes with more

fine-grained layout information provided by human pose keypoints. We use OpenPose [225,

226, 227] to detect 18 keypoints for each person in the image. A human candidate box

is assigned a keypoints-skeleton if the smallest bounding box around the keypoints has

70% or more of its area inside the human box. Similar to box features, we encode both

absolute human pose and the relative location with respect to the object candidate box.

The absolute pose features (18 × 3 = 54) consist of keypoint coordinates normalized to

the human bounding box frame of reference and confidence of each keypoint predicted by

OpenPose. The relative pose features (18 × 5 = 90) consists of offset of the top left and

bottom right corners of the object box relative to each keypoint and keypoint confidences.

The absolute and relative pose features and their log values are concatenated along with

one hot object label encoding before feeding into φpose. φpose is also an MLP with 2 hidden

layers with 368 (= 2× (54 + 90) + 80) neurons each. Both hidden layers are equipped with

Batch Normalization and ReLU. The output layer, like the other factors, has 117 neurons.
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(a) Det + App + Box + Pose (b) Det + Box + Pose (No App)

(c) Det + App + Pose (No Box) (d) Det + App + Box (No Pose)
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Figure 7.2: Interaction confusions. Element (m,n) in each heatmap visualizes
P (yim = 1|b1, b2, k(b1), o, x), the probability of interaction im ∈ I for box-pair (b1, b2), aver-
aged across all box pairs with ground truth interaction in ∈ I. Each row m is independently
normalized and exponentiated to highlight the interactions most confused with interaction
im. Only 30 of the 117 classes with the highest median AP across objects (see Fig. 7.4) are
shown for clarity.

7.3.3 Training

Since more than one HOI label might be assigned to a pair of boxes, the model is trained

in a fully supervised fashion using the multi-label binary cross-entropy loss. For each image

in the training set, all candidate boxes for all HOI classes (Bh × Bo for class (h, o, i)) are

assigned a binary label based on whether both the human and object candidate boxes have
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drink with bottle, 0.76 straddle bike, 0.93 jump motorcycle, 0.87 eat hot dog, 0.69 ride elephant, 0.93

repair bicycle, 0.22 turn motorcycle, 0.62drive truck, 0.86 hold dog, 0.92 kick sports ball, 0.93 carry backpack, 0.94

carry baseball bat, 0.78 hug person, 0.4 cut with knife, 0.24 watch bird, 0.83 pour cup, 0.04 kiss elephant, 0.05

inspect boat, 0.17 open backpack, 0.02 inspect airplane, 0.61 block frisbee, 0.31 watch bear, 0.91
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Figure 7.3: Qualitative results with top ranking true and false positives with predicted
probability.

an intersection-over-union (IoU) score greater than 0.5 with a ground truth box-pair of the

corresponding HOI category. During training, the jth sample in a mini-batch consists of a

box pair (bj1, b
j
2), HOI category lj ∈ H for which the box pair is a candidate (the box pair

is a candidate for HOI class (h, o, i) iff bj1 ∈ Bh and bj2 ∈ Bo), binary label yj to indicate

match (or not) with a ground truth box pair of class lj, detection scores for human and

object category corresponding to class lj, and input features for each factor φ. Pair of boxes

which are candidates for more than one HOI category are treated as multiple samples during

training. Since the number of samples per image is 3 orders of magnitude (typically > 1000)

larger than the number of positive samples (typically < 3), random sampling would leave

most mini-batches with no positives. We therefore select all positive samples per image and

then randomly sample 1000 negatives per positive. Given a mini-batch of size N constructed
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Full Rare Non-Rare
Number of training instances per HOI class

0-9 10-49 50-99 100-499 500-999 1000+

HO-RCNN [204] 7.81 5.37 8.54 - - - - - -
VSRL [221] (impl. by [205]) 9.09 7.02 9.71 - - - - - -
InteractNet [205] 9.94 7.16 10.77 - - - - - -
GPNN [228] 13.11 9.34 14.23 - - - - - -
iCAN [207] 14.84 10.45 16.15 - - - - - -

Det 8.32 6.84 8.76 6.84 4.85 6.05 10.18 14.40 21.46
Det + Box 12.54 10.40 13.18 10.40 7.46 9.99 14.62 20.12 35.98
Det + Human App 11.12 8.82 11.80 8.82 7.73 9.19 13.41 15.85 26.42
Det + Object App 11.05 7.41 12.13 7.41 7.68 9.72 14.61 15.58 23.27
Det + App 15.74 11.35 17.05 11.35 10.58 13.96 20.11 22.76 34.75
Det + Human App + Box 15.63 12.45 16.58 12.45 9.94 12.69 19.05 23.60 39.63
Det + Object App + Box 15.68 10.47 17.24 10.47 9.97 12.84 20.48 23.88 40.87
Det + App + Box 16.96 11.95 18.46 11.95 11.02 14.00 22.02 25.01 41.13

Det + Pose 11.09 8.04 12.00 8.04 7.26 8.47 13.08 18.81 32.66
Det + Box + Pose 14.49 11.86 15.27 11.86 9.73 12.21 16.51 21.72 38.81
Det + App + Pose 15.50 10.14 17.10 10.14 10.40 13.11 20.40 23.45 36.08
Det + App + Box + Pose 17.18 12.17 18.68 12.17 11.28 14.49 22.08 25.27 41.47

Table 7.1: Results on HICO-Det test set. Det, Box, App, and Pose correspond to
object detector terms, appearance, box configuration, and pose factors respectively. Each
row was both trained and evaluated with specified factors. Best and second best numbers
are highlighted in color.

from a single image x, the loss is computed as

Lmini-batch = − 1

N |H|

N∑
j=1

∑
l∈H

1(l = lj) · BCE(yj, P (yl = 1|bj1, b
j
2, k(bj1), ol, x)), (7.4)

where BCE(y, p) = y log(p) + (1 − y) log(1 − p) is the binary cross entropy loss and the

probability is computed using Eq. 7.1. In our experiments, we only learn parameters of the

interaction term (i.e. MLPs used to compute factors φhuman, φbox, and φpose)

7.4 EXPERIMENTS

We use the HICO-Det dataset to evaluate the proposed approach. In addition to demon-

strating our model’s mAP to be more than 1.7× that of the current state-of-the-art, our

experiments evaluate the contribution of different factors in our model through an ablation

study (Tab. 7.1) that shows the effect of factors on HOI categories with different number of

training samples. In Tab. 7.2 we evaluate the impact of several training procedure design

choices. Our analysis also includes visualization of distribution of performance across object
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and interaction categories (Fig. 7.4), inter-interaction confusions (Fig. 7.2), and examples of

top ranking detections and failure cases (Fig. 7.3).

HICO-Det dataset contains 38118 training and 9658 test images annotated with 600

HOI categories. We further use an 80-20 split of the training images to generate our actual

training and validation sets. For all experiments we train on this smaller training set and

use the validation set for model selection. HOI categories consist of 80 object categories

(same as COCO classes) and 117 interactions. Each image on average contains 1.67 HOI

detections.

7.4.1 Comparison to State-of-the-art

Tab. 7.1 shows mAP of our final models Det+App+Box and Det+App+Box+Pose, (and

ablations) in comparison to existing models in the literature on various sets of HOI categories

– Full is mAP across all 600 classes, Rare on classes with less than 10 training instances,

and Non-Rare on the rest. To present a clearer picture, in addition to this Rare-Non-Rare

split specified in [204], we show results for a more fine-grained grouping of classes based on

number of training instances.

The model most similar to ours is InteractNet [205] which extends Faster-RCNN with

a human-centric branch that produces interaction scores based on human (and optionally

object) appearance and a distribution over target object location. There are 4 factors con-

tributing to the improved performance of our model over InteractNet : (i) use of significantly

large ratio of negative to positive box-pairs during minibatch training (our model uses 1000

whereas [205] uses 3 for the detection branch and no negatives for the interaction branch);

(ii) box configuration term in our model directly scores box-pair features, a formulation that

maybe easier to learn than predicting distribution over target object locations using human

appearance features alone; (iii) fixing training-inference mismatch (Fig 7.1); (iv) easy nega-

tive rejection that allows our model to focus on learning to rank only hard candidate pairs

for a particular HOI category, namely all combinations of human and object detections of

the relevant category. Effect of factors (i), (iii), and (iv) towards our model’s performance

are further investigated in Tab. 7.2 and Sec. 7.4.2.

HO-RCNN [204] takes human appearance, object appearance, and box configuration en-

coded as an interaction pattern as inputs and processes them with 3 separate branches, each

of which produces a score for each HOI category. The scores are combined along with object

detection scores to produce HOI probabilities and the model is trained using multi-label

binary classification loss. Our model improves over HO-RCNN in two ways: (i) weight shar-

ing in our factored model (and also in InteractNet and iCAN ) makes it more data efficient
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Neg./Pos. Indicators HOI Loss Interaction Loss mAP

10 3 3 7 13.40
50 3 3 7 15.51
100 3 3 7 16.30
500 3 3 7 17.06
1000 3 3 7 16.96
1500 3 3 7 16.62

1000 7 3 7 15.93
1000 3 7 3 15.89

Table 7.2: Training procedure choices evaluated using Det + App + Box model.
The results highlight the importance of: (i) large negative to positive ratio in mini-batches;
(ii) using indicators during training to only learn to rank candidates selected specifically for
a given HOI category instead of all detection pairs; (iii) directly optimizing the HOI clas-
sification loss instead of training with an interaction classification loss and then combining
with object detector scores heuristically. Best and second best numbers are highlighted
in color.

than [204] which predicts scores for 600 HOI categories using independent weights in the

last 600-way fully connected layer; and (ii) we explicitly encode spatial layout as opposed

to [204] which has to learn such a representation via a CNN.

Like iCAN [207], we also observe that object appearance provides useful information

complementary to human appearance for HOI detection (Det + Human App: 11.12, Det +

Object App: 11.05 vs . Det + App: 15.74). While our model only uses human and object

appearance encoded in pretrained detector features, [207] further proposes an attention

mechanism to augment human and object appearance with contextual information from the

image, a contribution complementary to ours. iCAN models its training after InteractNet

and uses interaction pattern from [204] to encode spatial layout, and hence can benefit from

our training procedure design choices and spatial encoding.

7.4.2 Significant Training Procedure Design Decisions

As shown in Tab. 7.2, increasing the ratio of negative box-pairs sampled per positive

in a mini-batch during training leads to a dramatic increase in performance. This is in

contrast to low ratios (typically < 10) used for training object detectors and hence also in

related work [204, 205]. We believe this is because seeing a large number of negative pairs

is important for learning to reject false positives. Also higher ratios are expected since the

number of negative pairs is quadratic in the number of region proposals as opposed to linear

for object detectors.

A distinguishing feature of our training and inference procedures is the use of indicator
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variables in interaction terms (Eq. 7.3) and training objective (Eq. 7.4). The observation

behind this choice is that with state-of-the-art object detectors like Faster-RCNN with only

6 human and 1.2 object detections per image on average (after NMS and score thresholding),

the recall of ground truth HOI candidates in HOI category specific candidate box-pairs stands

at 59% (much higher than mAP of existing approaches). This suggests that object detectors

are effective at rejecting easy negative pairs. Thus, using the indicator variables increases

learning efficiency by allowing the model to focus on learning to reject hard negatives, namely

candidate pairs which contain a human and object of interest but not engaging in the desired

interaction. Tab. 7.2 shows that even while using the indicators during inference, not using

them during training causes a drop in mAP from 16.96 to 15.93.

Finally, training the model using interaction classification loss on the probabilities pre-

dicted by the interaction term, as done in [205], is suboptimal in comparison to training

using HOI classification loss (15.89 vs 16.96 mAP) even though the same set of parameters

are optimized by both losses. This is because the latter provides an opportunity for the

interaction term to calibrate itself relative to the detection terms. This approach is also

used in [204] but without strong weight sharing assumptions made by our factor model.

7.4.3 Factor Ablation Study

To identify the role of different sources of appearance and spatial information in our model

we train models with subsets of available factors.

The role of individual factors can be assessed by comparing Det, Det+Box, Det+App,

and Det+Pose. Note that appearance terms lead to largest gains over Det followed by Box

and Pose. We further analyse the contribution of human and object appearance towards

predicting interactions. Interestingly, while Det+Human App and Det+Object App per-

form comparably (11.12 and 11.05), the combination outperforms either of them with an

mAP of 15.74 showing that the human and object appearance provide some complemen-

tary information. Note that an mAP of 11.12 (= max(11.12, 11.05)) or less would indicate

completely redundant or noisy signals. Similar sense of complementary information can be

assessed from Table 7.1 for App-Box, App-Pose, and Box-Pose pairs. While Det+Box+Pose

improves over Det+Box, Det+App+Pose and Det+App perform comparably. Similarly

Det+App+Box+Pose only slightly improves the performance of Det+App+Box. This sug-

gests that while explicit pose features may provide useful information in absence of appear-

ance information, they are somewhat redundant otherwise.

Another way of understanding the role of factors is to consider the drop in performance

when a particular factor is removed from the final model. Relative to Det+App+Box+Pose,
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Figure 7.4: Spread of performance (range and quartiles) across interactions with the
same object (top) and across objects for a given interaction (bottom). The horizontal axis
is sorted by median AP.

performance drops are 2.69, 1.68, and 0.22 mAP for App, Box and Pose factors respectively.

7.4.4 How is the performance distributed across objects and interactions?

Fig. 7.4 visualizes the spread of performance of our final model across interactions with

a given object and across objects for a given interaction. The figure shows that for most

objects certain interactions are much easier to detect than others (with the caveat that AP

computation for any class is sensitive to the number of positives for that class in the test

set). Similar observation is true for different objects given an interaction. In addition, we

observe that interactions which can occur with only a specific object category (as indicated

by absence of box) such as “kick-ball” and “flip-skateboard” are easier to detect than those

that tend to occur with more than one object such as “cut” and “clean” and could have

drastically different visual and spatial appearance depending on the object. Heatmaps in

Fig. 7.2 show the interactions that are confused by different models. Comparing heatmap b

with a shows the role of the appearance factor in reducing confusion between interactions.

For instance, without App “eat” is confused with “brush with” and “drink with”, but not

in the final model. Similarly, compare c and d with a for the effect of Box and Pose factors

respectively.
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7.4.5 Qualitative Results

Qualitative results (Fig. 7.3) demonstrate the advantages of building HOI detectors on the

strong foundation of object detectors. False positives are more commonly due to incorrect

interaction than object. Interaction errors are often due to fine grained differences between

classes: e.g ., “carry” vs . “wield” “baseball bat” and “inspect” vs . “repair” “boat.” Notice in

some examples like “inspect airplane” and “watch bear,” cues for preventing false positives

are as subtle as gaze direction.

7.4.6 Conclusion

In this chapter we proposed a simplified yet powerful factored model for detecting human-

object interactions. We analyse the model thoroughly to provide insight into the relative

importance of appearance, box configuration, and pose factors towards HOI detection. We

also highlight training procedures that demonstrably improve model performance.
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CHAPTER 8: CONCLUSION

Vision and Language research is not just about a collection of tasks that involve text

and visual data such as VQA or Image Captioning. This field of study allows us to ask

fundamental questions about how an artificially intelligent system may acquire information

about the world, represent that information efficiently and in an extensible manner, and

use the representation to perform tasks involving making predictions, communicating with

humans in natural language, or taking actions.

In this dissertation, we have only scratched the surface by focusing on 3 challenges: (i)

learning generalizable representation of images and words; (ii) modeling interactions between

objects; and (iii) learning to map words to image regions without word-region grounding su-

pervision. The key guiding principles behind the questions asked and solutions provided in

this thesis and that, we believe, should continue to guide the direction of future work are as

follows:

Improve generalization and extensibility: Current approaches excel at learning tasks

like VQA or Image Captioning from direct task supervision. However, supervised learning

assumes similar distributions for training and test data. This assumption jeopardizes gen-

eralization of learned representations and inference not only to new tasks but also to new

domains and novel concepts for the same task that may not be seen during task training.

Today, it is difficult to generate captions about a “tiger” detected in an image if none of the

training captions mention “tiger”. Future research should make it easy to incorporate novel

concepts or domains into an existing VQA or captioning systems.

Minimize supervision and increase learning efficiency: Humans are constantly tak-

ing in visual and textual information, building representations and learning skills. Much of

this process takes place through sparse supervision. It is therefore quite unsatisfying that

vision-language models need hundreds of thousands of question-answers or captions to learn

to perform question-answering or captioning. It is crucial for future work to build represen-

tations in an unsupervised manner, and develop sample efficient and flexible mechanisms

that can take advantage of unsupervised representations and sparse supervision available

across multiple tasks to learn task-inference.

In the next section, we present our vision for what models for vision-language tasks may

look like in the future and highlight their desirable properties.
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Figure 8.1: Current vision-language models vs . recommended compositional models with
representation and inference sharing schemes.

8.1 A VISION FOR THE FUTURE

Consider VQA and Image Captioning tasks to be performed on 2 domains – street scenes

and medical X-ray images. Current vision-language models train end-to-end models that

simultaneously learn representations and inference in a monolithic architecture. This means

that even though one might have a trained VQA model for street scenes, applying it to an-

swer questions about medical images or produce captions for street scenes requires retraining

the model, perhaps with parameters initialized from the street-scene VQA model. This is in

stark contrast to traditional algorithms in computer science.

A sorting analogy. VQA models are learned algorithms for answering questions. However,

these learned algorithms behave quite differently from traditional algorithms such as Merge

Sort. Whether one wants to sort a sequence of numbers or a sequence of words, the exact

same algorithm – recursively dividing the sequence, sorting, and merging – is able to achieve
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the desired result. What does change is the comparison operation or the input representa-

tion – order of numbers vs . words. In contrast, for current VQA models, representations

and inference are so intertwined (what layers learn representations and what layers perform

inference remains unclear). Therefore, retraining the model on a new domain changes the

image, question and answer representations as well as the implicit inference captured by the

model parameters (e.g . behavior of the attention mechanism). Hence, the current mono-

lithic approaches to vision-language tasks introduce unnecessary duplication of effort in the

learning process.

A compositional solution. We believe a potential solution is to disentangle represen-

tation from inference for vision-language tasks. The key idea, as shown in Fig. 8.1, is to

compose a model for a task from 3 modules: (i) a domain-specific but task-agnostic in-

put/output (I/O) representation module such as for representing images and words; (ii)

domain-specific knowledge base such as a dictionary of medical conditions and affected body

parts for medical-image question answering; and (iii) task-specific but domain-agnostic in-

ference module. When training on multiple tasks and domains, the modules are composed

on the fly for each task sharing representation and knowledge bases across similar domains

across different tasks, and sharing inference across domains for the same task.

There exists some work on creating inference for VQA depending on the question by

composing neural modules [74, 75, 229]. However, the key difference between our approach

and these methods is the level of abstraction at which compositionality is enforced. While

these methods are trying to compose inference for a single task and domain (a given VQA

dataset) from neural modules, we are proposing to compose representation, knowledge and

inference across multiple tasks (VQA, Captioning etc.) and domains (street scenes, medical

images etc.).

8.2 CONCLUDING REMARKS

It is a testament to the progress made by the AI research community that complex prob-

lems like visual question answering, image captioning, or semantic scene generation are

within reach of current computational tools and techniques. However, today’s state-of-the-

art is far from the human ability to collect information, synthesize a consistent world view,

make well reasoned decisions, and act to achieve complex goals. End-to-end, task-specific

learning from massive datasets has been a foundational stepping stone towards general in-

telligence. But to keep making progress, we must continue our search for more efficient,

scalable, generalizable, and extensible learning solutions.
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